Last modified: December 2023

URL: https://cxc.cfa.harvard.edu/sherpa/ahelp/sersic2d.html
AHELP for CIAO 4.16 Sherpa

sersic2d

Context: models

Synopsis

Two-dimensional Sersic model.

Syntax

sersic2d

Description

This is a generalization of the devaucouleurs2d model, in which the exponent n can vary ( [1] , [2] , and [3] ).


Example

>>> create_model_component("sersic2d", "mdl")
>>> print(mdl)

Create a component of the sersic2d model and display its default parameters. The output is:

mdl
   Param        Type          Value          Min          Max      Units
   -----        ----          -----          ---          ---      -----
   mdl.r0       thawed           10            0  3.40282e+38           
   mdl.xpos     thawed            0 -3.40282e+38  3.40282e+38           
   mdl.ypos     thawed            0 -3.40282e+38  3.40282e+38           
   mdl.ellip    thawed            0            0        0.999           
   mdl.theta    thawed            0     -6.28319      6.28319    radians
   mdl.ampl     thawed            1 -3.40282e+38  3.40282e+38           
   mdl.n        frozen            1          0.1           10           

ATTRIBUTES

The attributes for this object are:

Attribute Definition
r0 The core radius.
xpos The center of the model on the x0 axis.
ypos The center of the model on the x1 axis.
ellip The ellipticity of the model.
theta The angle of the major axis. It is in radians, measured counter-clockwise from the X0 axis (i.e. the line X1=0).
ampl The amplitude refers to the maximum peak of the model.
n The Sersic index (n=4 replicates the devaucouleurs2d model).

Notes

The functional form of the model for points is can be expressed as the following:

f(x0,x1) = ampl * exp(-b(n) * (r(x0,x1)^(1/n) - 1))

    b(n) = 2 * n - 1 / 3 + 4 / (405 * n) + 46 / (25515 * n^2)

r(x0,x1)^2 = xoff(x0,x1)^2 * (1-ellip)^2 + yoff(x0,x1)^2
             -------------------------------------------
                          r0^2 * (1-ellip)^2

xoff(x0,x1) = (x0 - xpos) * cos(theta) + (x1 - ypos) * sin(theta)

yoff(x0,x1) = (x1 - ypos) * cos(theta) - (x0 - xpos) * sin(theta)

The grid version is evaluated by adaptive multidimensional integration scheme on hypercubes using cubature rules, based on code from HIntLib ( [4] ) and GSL ( [5] ).

References


Bugs

See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.

See Also

models
beta2d, devaucouleurs2d, hubblereynolds, lorentz2d