Last modified: December 2018

URL: http://cxc.harvard.edu/sherpa/ahelp/hubblereynolds.html
Jump to: · Example · ATTRIBUTES · Notes · References · Bugs · See Also


AHELP for CIAO 4.11 Sherpa v1

hubblereynolds

Context: models

Synopsis

Two-dimensional Hubble-Reynolds model.

Syntax

hubblereynolds

Example

>>> create_model_component("hubblereynolds", "mdl")
>>> print(mdl)

Create a component of the hubblereynolds model and display its default parameters. The output is:

mdl
   Param        Type          Value          Min          Max      Units
   -----        ----          -----          ---          ---      -----
   mdl.r0       thawed           10            0  3.40282e+38           
   mdl.xpos     thawed            0 -3.40282e+38  3.40282e+38           
   mdl.ypos     thawed            0 -3.40282e+38  3.40282e+38           
   mdl.ellip    thawed            0            0        0.999           
   mdl.theta    thawed            0     -6.28319      6.28319    radians
   mdl.ampl     thawed            1 -3.40282e+38  3.40282e+38           

ATTRIBUTES

The attributes for this object are:

r0

The core radius.

xpos

The center of the model on the x0 axis.

ypos

The center of the model on the x1 axis.

ellip

The ellipticity of the model.

theta

The angle of the major axis. It is in radians, measured counter-clockwise from the X0 axis (i.e. the line X1=0).

ampl

The amplitude refers to the maximum peak of the model.

Notes

The functional form of the model for points is:

f(x0,x1) = ampl / (1 + r(x0,x1))^2

r(x0,x1)^2 = xoff(x0,x1)^2 * (1-ellip)^2 + yoff(x0,x1)^2
             -------------------------------------------
                          r0^2 * (1-ellip)^2

xoff(x0,x1) = (x0 - xpos) * cos(theta) + (x1 - ypos) * sin(theta)

yoff(x0,x1) = (x1 - ypos) * cos(theta) - (x0 - xpos) * sin(theta)

The grid version is evaluated by adaptive multidimensional integration scheme on hypercubes using cubature rules, based on code from HIntLib ( [1] ) and GSL ( [2] ).

References


Bugs

See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.

See Also

models
beta2d, devaucouleurs2d, lorentz2d, sersic2d