Synopsis
Return the confidence data defining a region projection contour plot
Syntax
get_reg_proj(par0=None, par1=None, id=None, otherids=None, recalc=False, fast=True, min=None, max=None, nloop=(10, 10), delv=None, fac=4, log=(False, False), sigma=(1,2,3), levels=None, numcores=None)
Description
The get_reg_proj() function returns the data defining a confidence contour of fit statistic as a function of two thawed model parameter values, produced by the reg_proj() function. (The confidence regions are determined by varying the value of each selected parameter on the grid, computing the best-fit statistic at each grid point, and interpolating on the grid. Each parameter value is varied until the fit statistic is increased by delta_S, which is a function of the largest value of sigma. For example, delta_S = 11.8 if the statistic is chi^2 and 3 is the largest element of the sigma array. All other thawed parameter s are allowed to float to new best-fit values at each step, instead of being fixed to the initial best-fit values.)
The get_reg_proj() function returns information on the most recent confidence contour plot produced with reg_proj(), independent of the arguments supplied, unless the 'recalc' argument is set to True. For example, if a region projection confidence contour plot is produced for the amplitude and gamma parameters of a power-law model, and then get_reg_proj() is used to obtain confidence data for a different pair of model parameters, the information returned by get_reg_proj() will correspond to the confidence contour of the amplitude and gamma parameters, *unless* the 'recalc' argument is switched on.
The computationally intensive projection function is parallelized to make use of multi-core systems (i.e., laptops or desktops with 2 or 4 cores) to provide significant improvements in efficiency compared to previous releases of Sherpa; the 'numcores' argument may be used to specify how the cores should be used when projection is run.
- par0 - first thawed source model parameter
- par1 - second thawed source model parameter
- id, otherids - the id(s) of the dataset(s) to use; if not given, uses the default dataset id (id=1 by default, see "ahelp get_default_id"); otherids=None
- recalc - re-calculate confidence data? ; default=False
- fast - if True (the default), then the fit optimization used may be changed from the current setting (only for the error analysis) to use a faster method.
- min - list of minimum grid boundaries [min_par0, min_par1]; default=None, which calculates the values from the covariance. This is always a linear quantity, regardless of the log setting.
- max - list of maximum grid boundaries [max_par0, max_par1]; default=None, which calculates the values from the covariance. This is always a linear quantity, regardless of the log setting.
- nloop - list of bin sizes for calculating the step sizes (delv); default=(10,10)
- delv - list of step sizes; default=None, which calculates the values using the min, max, and nloop values
- fac - factor used to expand or condense the contour intervals; default=4
- log - use log space for the contours? Value is a list; default=(False,False)
- sigma - list of the number of sigma (i.e., the change in statistic) for the contours; default=(1,2,3)
- levels - list of confidence level "z" values; default=None, which uses the sigma values
- numcores - number of cores to use in parallelization; default is to use all cores available.
Examples
Example 1
sherpa> print get_reg_proj()
When called with no arguments from within the print command, get_reg_proj() returns the confidence data defining the most recently produced region projection contour plot.
sherpa> reg_proj(pl.gamma, pl.ampl) sherpa> print get_reg_proj() x0 = [ 1.8274 1.901 1.9745 ..., 2.3425 2.4161 2.4897] x1 = [ 0.0002 0.0002 0.0002 ..., 0.0003 0.0003 0.0003] y = [ 55.7019 53.6498 54.4308 ..., 54.3251 56.0053 59.9229] min = [ 1.8274e+00 1.6554e-04] max = [ 2.4897e+00 2.8414e-04] nloop = (10, 10) fac = 4 delv = None log = [False False] sigma = (1, 2, 3) parval0 = 2.15851551134 parval1 = 0.00022484014788 levels = [ 40.2037 44.088 49.7371]
where the x0, x1, and y arrays contain the par0 values, par1 values, and fit statistic values, respectively.
Example 2
sherpa> print(get_reg_proj("pl2.gamma", "pl2.ampl", id=2, recalc=True))
This command will calculate and return the region projection confidence data for the amplitude and gamma parameters of the power law model 'p1' assigned to data set 2. Since the 'recalc' argument is set to True, the confidence data for this set of parameters will be returned regardless of whether or not they were the last ones used with reg_proj.
Bugs
See the bugs pages on the Sherpa website for an up-to-date listing of known bugs.
See Also
- confidence
- conf, covariance, get_conf, get_covar, get_int_proj, get_int_unc, get_proj, get_reg_unc, int_proj, int_unc, projection, reg_proj, reg_unc, set_conf_opt, set_covar_opt, set_proj_opt
- contrib
- get_chart_spectrum, get_marx_spectrum
- data
- get_areascal, get_arf, get_arf_plot, get_axes, get_backscal, get_bkg, get_bkg_plot, get_bkg_scale, get_coord, get_counts, get_data, get_data_plot, get_dep, get_dims, get_error, get_exposure, get_grouping, get_indep, get_quality, get_rmf, get_specresp, get_staterror, get_syserror
- filtering
- get_filter
- fitting
- calc_stat_info, get_fit, get_stat_info
- info
- get_default_id, list_stats
- methods
- get_draws, get_iter_method_name, get_iter_method_opt, get_method
- modeling
- get_model, get_model_component, get_model_component_image, get_model_component_plot, get_model_plot, get_num_par, get_order_plot, get_par, get_pileup_model, get_response, get_source, get_source_component_image, get_source_component_plot, image_source
- plotting
- get_split_plot
- psfs
- get_kernel, get_psf
- statistics
- get_chisqr_plot, get_delchi_plot, get_prior, get_sampler, get_stat
- utilities
- get_analysis, get_rate
- visualization
- get_ratio, get_resid, image_getregion