
Timing Analysis of X-ray Lightcurves

Michael Nowak, mnowak@space.mit.edu

X-ray Astronomy School; Aug. 1-5, 2011

Introduction

This exercise is designed to give a brief introduction to oneaspect of timing analysis: Fourier transforms
(executed via a Fast Fourier Transform, FFT, of discrete data) and their associated Power Spectral Densities
(PSD). Parts of this exercise have been cribbed from Tomaso Belloni’s tutorial that was presented at the
European “2nd School on Multiwavelength Astronomy” (June 28–July 9, 2010), which can be found at:

http://www.black-hole.eu/index.php/schools-workshops-and-conferences/
2nd-school-on-multiwavelength-astronomy/program

There you can also find a very good presentation by Michiel vander Klis describing in much more detail
the fundamentals of Fourier techniques in X-ray timing.

It is important to note that Fourier techniques are by no means the only tools employed in timing analysis.
However, they are very commonly used, and often are the starting point, or at least the comparison point,
for other analyses. Here we shall introduce the Power Spectral Density (PSD; sometimes also referred to as
Power Density Spectra, PDS).

A Fourier Transform is a decomposition of a signal into a sum of complex exponential (i.e., sinusoidal)
components, with each component having a complex amplitudeand a complex phase. When dealing with
discretely sampled, uniformly binned lightcurves, one uses the discrete Fourier transform. Specifically, if
xk are the lightcurve amplitudes measured at timestk (subdivided intoN uniform steps of time bins with
width 1/T), then the discrete Fourier transform is given by

aj =
∑

k

xke
iωjtk . (1)

Herei is the imaginary unit, andωj are the discrete Fourier frequencies given by

ωj ≡ 2πνj =
2πj

T
, (2)

with j being theintegers

j = −N

2
+ 1, . . . ,

N

2
. (3)

The frequencyνNy ≡ νN/2 = N/2T is referred to as the Nyquist frequency, and is the highest frequency
one can explore in a discretely sampled lightcurve. (Pleaserefer to the above cited lecture by Michiel van
der Klis for much more detail on this issue.)

The Fourier transform can be inverted:

xk =
1

N

∑

j

aje
−iωjtk =

1

N

N/2
∑

j=−N/2+1

aje
−i2πjk . (4)

1

If the signalxk is real (i.e., like all the signals we deal with in X-ray timing analysis!), then for the Fourier
transform of equation (1), the imaginary terms at−j and+j cancel out in the sum, leaving us with terms of
the form:

2|aj | cos(ωjtk − φj) . (5)

Since real signals are what we deal with in X-ray astronomy, one usually only deals with the positive Fourier
frequencies,ωj , and refers to2|aj | as the Fourier amplitude, andφj as the Fourier phase.

In this exercise, we will only be dealing with the squared Fourier amplitudes,∝ a∗jaj = |aj |2. The run of
these amplitudes vs. frequency is what is referred to as the PSD. It is a measure of the “power” of a signal
over a given range of frequencies. Specifically, the PSD is a measure of the fractional variability over a
given range of frequencies. Often, you will see the PSD in units of (RMS)2/Hz, i.e., (root mean square
variability)2 /unit frequency. In this formulation,

(
∫

df PSD(f)

)1/2

, (6)

is the fractional variability of a signal over that frequency range.

This leads to a final point: PSD normalization conventions. In the above formulas, the negative sign in
front of the imaginary unit could have been associated with either the “forward” (time to frequency) or
“reverse” (frequency to time) transform. Likewise, the term involving N can be associated with one or the
other transform, or split between both. And sometimes factors of 2 or

√
2 are introduced. That is, different

software packages will define the transform pairs differently (but they will always come in pairs that are
self-consistent, in that applying the reverse transform after the forward transform will get you back to where
you started, modulo numerical roundoff errors). Always be careful to know the conventions of the software
package that you are using!

In X-ray astronomy you will usually see one of two conventions employed, which can be distinguished by
the properties of the PSD of Poisson noise. Poisson noise is referred to as “white noise” since the expectation
for its PSD is that it is, on average, flat (i.e., constant) as afunction of Fourier frequency. Astrophysical
PSD are normalized such that the Poisson noise level is expected to be 2 (often referred to as the “Leahy
normalization”), or such that the Poisson noise is expectedto be 2/count rate (referred to as “RMS” or
“Belloni-Hasinger” or “Miyamoto” normalization). For theformer, the amplitude of an astrophysical signal
scales with count rate (but the noise level is constant), whereas for the latter, the astrophysical signal is
independent of count rate (but the noise level increases with decreasing count rate). In the exercise that
follows, we will use the Leahy normalization.

Practice Creating Your Own Signals

The following presumes you are usingISIS, and have downloaded theSITAR package from:

http://space.mit.edu/cxc/analysis/SITAR/

SITAR will be used for two purposes: create a PSD from a lightcurve,and then register this PSD as a
fittable dataset. Any system wherein one can: read a FITS file,perform an FFT, and then register the
resulting PSD as a fittable dataset would suffice. The “value added” inSITAR is that it properly takes care
of the normalization issues and gets the statistics correct, as we explain below. Reproducing the functionality
that we will use here is not terribly difficult in a number of other systems. We leave it as an exercise for the
ambitious student!

First, loadSITAR from the same directory in which you are runningISIS.

isis> require(‘‘sitar’’);

2

Now create a linear grid of1024 ∗ 16 time points ranging from 0–16 sec.

isis> (tlo,thi) = linear grid(0,16,1024*16);
isis> tavg = (tlo+thi)/2;

Create a constant+sinusoidal signal with a period of 1/100 sec.

isis> period=0.01;
isis> omega=2*PI/period;
isis> lc=10+sin(omega*tavg);

Plot these data over a subsection of the lightcurve.

isis> xrange(0,0.5); xlabel(‘‘Time’’); ylabel(‘‘Amplitude’’);
isis> plot(tavg,lc);

A real signal will have noise associated with it, so let’s addsome to the lightcurve. Specifically, we will add
Gaussian noise with zero mean and unit variance.

isis> lc += grand(1024*16);
isis> plot(tavg,lc);

Now useSITAR to create anaverage PSD,psd, at frequenciesf, where the length of the individual PSD
making up the average is 1024*16 (i.e., the whole lightcurve), and where the uniform time bin size is 1/1024.
Plot the results!

isis> (f,psd,navg,cts) = sitar avg psd(lc,1024*16,1./1024,tavg);
isis> xrange(); % Reset the xrange of the data to autoscale
isis> xlog; ylog; % Use logarithmic axes
isis> xlabel(‘‘Frequency (Hz)’’);
isis> ylabel(‘‘PSD’’);
isis> plot(f,psd);

Herenavg is the number of lightcurve segments used in the average PSD (here, 1, since we created a PSD
of the same length as the input lightcurve), andcts is the average counts per segment (here, total counts).
Note that her we have not used proper Poisson statistics, so we shouldn’t worry too much about the overall
normalizations at this point.

Why does one usually average the PSD from multiple lightcurve segments? One often assumes that real
astrophysical signals representstochastic processes (i.e., the lightcurve is not deterministic, but has well-
defined statistical properties). In this case, we expect thelightcurve to have a well-defined average PSD, but
a standard deviation equal to the average. We improve our estimate of the mean PSD by averaging many
lightcurve segments and/or binning over adjacent frequency bins. Although averaging gives us a better
estimate of the mean PSD, we sacrifice knowledge of the low frequency behavior (shorter segments means
a higher minimum frequency for any given segment), and have to be careful not to average over so many
frequency bins as to hide any interesting behavior. (One often uses a logarithmic binning approach where
the number of frequency bins averaged over increases as one goes to higher frequency. Remember, the
frequency bins are uniformly spaced with resolution of1/T .)

The lightcurves created abovedo not represent a stochastic process; therefore, we didn’t bother averaging
over multiple lightcurve segments. Averaging, however, will improve the estimates of the noise level. Try
that now by using shorter data segments, and plot the results:

isis> (f,psd,navg,cts) = sitar avg psd(lc,1024,1./1024,tavg);
isis> plot(f,psd);

Repeat the exercise, but increase the amplitude of the gaussian noise component. How does the signal
change? Try two sinusoids at different frequencies. Add phase shifts to the sinusoids, and compare the
power spectra to what you obtained previously.

3

Power Spectra of Astrophysical Sources

I have placed on a web site a set of lightcurves from an RXTE observation of a neutron star source. The
gzipped tar file can be found at:

http://space.mit.edu/home/mnowak/data/events.tar.gz

The file unpacks to files namedevents 18 39 *.lc, each of which contain counts vs. time. Start with
the fileevents 18 39 a.lc. Read the time and counts from this file.

isis> (t,c) = fits read counts(‘‘events 18 39 a.lc’’,’’time’’,’’counts’’);

What is the width of the time bins in this lightcurve? What is its total length? What is the range of frequen-
cies that you can explore with the PSD? Try plotting this lightcurve, and look at various short segments.

Create a PSD from this lightcurve. (Suggestion: FFTs tend torun fastest for lightcurves whose lengths are a
power of 2. In fact, the RXTE clock was specifically designed to have its fundamental clock ticks be in units
of a power of 2 times a second, e.g.,2−10 sec.) Where is the noise level? Are there any other interesting
features present?

Let’s assume that you have assigned the outputs ofsitar avg psd to variablesf, psd, navg, andcts
as before. We can further bin the PSD by averaging over frequency bins.

isis> (aflo,afhi,apsd,nf) = sitar lbin psd(f,psd,0.01);

will average over bin widths∆f/f = 0.01. Each new frequency bin is averaged fromnf frequency bins,
while the original PSD was created fromnavg lightcurve segments. If the PSD error goes as the PSD value
divided by the square root of the number of averages, what is the PSD error for a given frequency bin?

Fit a model to this PSD in the frequency range 500–1500 Hz. To do this, we must first “register” the PSD
data: frequency bin values, PSD values, and PSD error bars.SITAR contains a function to do this inISIS,
which we apply as follows.

isis> Minimum Stat Err = 1.e-30;

isis> id = sitar define psd(aflo,afhi,apsd,apsd/sqrt(navg*nf));

The first command above resets theISISminimum error from the usual value of 1 (often appropriate when
using Poisson statistics and counts/bin as the data) to a much lower value. Here the error on the PSD value
can be as low as10−3. The second command assigns the frequencies, PSD, and PSD errors as a dataset,
with the frequency units of Hz being treated like energy units of keV. Although programs likeISIS and
Sherpa are in fact agnostic about the units of fittable datasets, many of their built in models (inherited from
legacyXSPEC models) presume bin units of keV. If one wants to use these legacy models, it is convenient
to make the implicit transformation of 1 Hz (Fourier frequency, not frequency of light!) = 1 keV.

Restrict the “energy” range to 500–1500 Hz (keV), and createa fit function that is a constant plus a gaussian,
and then fit the data. Plot your results.

isis> xnotice en(id,500,1500); % Restrict the energy range

isis> fit fun(‘‘constant+gaussian’’);

isis> list par; % Look at the model default parameters

isis> set par(1,2,0,1,3); % Set parameters to reasonable starting

isis> % values, with sensible limits on the ranges.

isis> % The 0 means free (not frozen) parameter.

isis> set par(‘‘const*’’,2,0,1,3); % Alternative to the above -

isis> % use the parameter’s name; wild cards OK

isis> % Next choose sensible gaussian parameters (not shown) ...

4

isis> fit counts;

isis> xlin; ylin; xrange(500,1500); yrange(1.9,2.2);

isis> rplot counts(id);

You’ll notice that in the above plot, the x-axis says “Energy[kev]” and that the y-axis says “Counts/bin”.
Again, we are making the association of 1 Hz=1 keV in order to be able to use theXSPEC legacy models.
(Custom plotting routines are available that will produce nice plots, and replace the axis labels with more
reasonable defaults.)

What is the frequency of the gaussian feature? What is its width in comparison to this frequency? The
frequency divided by the width is called theQ-value, with largeQ-values indicating combinations of long
persistence times, and stable frequency and phases, of an oscillating feature. Is this a highQ-value feature?
A more realistic profile to fit to such a feature would be a Lorentzian function that was properly averaged
over the width of the individual frequency bins. Such a function is not hired to write (i.e., a simple scripted
fit function would suffice). We leave it as an exercise for the reader to write and fit such a function!

You can determine error bars for the parameters using theconf command. E.g.,

isis> conf(1);

will give the 90% confidence limit for theconstant component. Is this constant statistically different than
the expected value of 2? Note that deadtime in the detectorcan reduce the expected PSD of Poisson noise
below 2. Is there evidence for detector deadtime here? Find the error bars for the gaussian feature as well.

Look at the other data files. Are the amplitude and frequency of the feature persistent? Is it present in
all of the lightcurves? What changes can you note? Is there any evidence for a harmonic of this feature
(e.g., another feature at twice the frequency). Feel free tocombine all of the power spectra from all of the
lightcurves. How would you go about doing that?

5

