Perspectives on High Resolution X-ray Spectroscopy

Rewards and Challenges

Claude R. Canizares MIT July 11-13, 2007 X-ray Spectroscopy Workshop Cambridge, MA

<u>Rewards</u> of High Resolution X-ray Spectroscopy

Spectroscopy puts most of the "physics" into X-ray astrophysics

See next three days of talks....

<u>Challenges</u> of High Resolution X-ray Spectroscopy

- Instrumentation:
 - Spectrometers are always hard to build
 - X-ray band presents some unique challenges
 - Wave-particle duality meets in the X-ray band
- Data analysis & interpretation:
 - getting out more physics requires putting in more effort
 - high price of entry for observers (perceptions may be even worse than reality)

1977

Detection of first X-ray "line" from non-solar source

15 yr after discovery of Sco X-1

6 yr after UHURU

Figure 1. A histogram showing the number of events per Bragg-angle bin of 12 arcmin width, registered during the 160-s observation of the source. The histogram is superimposed on an X-ray map taken from Zarnecki *et al.* (1973). X-ray and radio contours are displayed. Also shown are the regions of soft X-ray emission discussed in the text.

Detection of O VIII Ly α from Puppis A with Bragg crystal spectrometer rocket payload (Zarnecki et al. 1977)

1981 (Uhuru + 10)

Puppis A spectral scan with Einstein Observatory Focal Plane Crystal Spectrometer (Winkler et al. 1981)

2001 (Uhuru +30, Einstein +20)

Spatially resolved spectroscopy of SNR E0102-72 with Chandra HETG (Flanagan et al., 2001)

Thirty Years of Satellite-borne X-ray Spectrometers

		Dispersive			Non-Dispersive		
<u>Mission</u>		<u>Bragg</u>	<u>TGS</u>	<u>RGS</u>	<u>SSS</u>	<u>CCD</u>	<u>μCal</u>
ANS (74-77)		Х					
Ariel 5 (75-78)		Х					
OSO-8 (75-79)		Х					
<u>Einstein</u> (78-81)		Х	Х		Х		
EXOSAT (83-86)			Х				
ASCA (93-01)						Х	
<u>Chandra</u> (99-)			Х			Х	
XMM-Newton (99-)			X			
Suzaku (05-)						X	r.i.p.

Wave-particle duality in X-ray spectrometers <u>"To Disperse or Not To Disperse"</u> <u>That is THE Question</u>

Spectrometers require a "standard unit" against which they compare (measure) the incoming radiation

WAVE: A standard of length can be compared to the radiation's wave length λ (generally results in dispersion)

OR

PARTICLE: A standard of energy can be compared to the radiation's particle property, E (no dispersion)

High resolution requires the standard to be precise and "small" relative to the property being measured (necessary but not sufficient)

High sensitivity requires the comparison to be efficient

THERE'S THE RUB!

Spectrometer Complementarity Cross-over Occurs in X-ray Band

Non-Dispersive E = hvEnergy Standard (courtesy of nature) IP, band gap, phonon energy... δE ~ eV (10 → 0.01) Instruments Prop Counters \rightarrow IPC Gas Scint PC → IGSPC $Si(Li) \rightarrow CCD$ **µCalorimeter** STJ/TES **Properties** $\Delta E \sim fixed$ Resolving Power = $E/\Delta E \sim E$

Dispersive $\lambda = c/v = hc/E$

Length Standard (courtesy of nature or engineering)

crystal lattice spacing (~ Å), grating period (~ 10^{2-3} Å) $\delta x * \theta \sim 0.1-0.01$ Å

InstrumentsBragg spectrometersTransmission GratingsReflection GratingsPropertiesΔλ~fixed

Resolving Power = $\lambda/\Delta\lambda \sim 1/E$

Spectral Resolving Power = $E/\Delta E = \lambda/\Delta \lambda$

Canizares et al. 2005

Development of the Chandra High Energy Transmission Grating

20 yr HETG Timeline:

1979-80 CRC & M. Schattenburg collaborate with Henry I. Smith

1983 AXAF RFP (1991/2 launch)

1985 Selected for Phase B study

1988 "phased new start" of AXAF (1995/6 launch)

- 1992 AXAF Restructured (1998 launch)
- 1995 Critical Design Review CDR
- 1996 Deliver & Calibrate Completed HETG

NASA *Chandra X-ray Observatory* High Energy Transmission Grating Spectrometer (HETGS)

1.1 meter

MLS-2001-05-11.01et

Invar grating frame.

Scanning electron micrograph of gold grating.

550 nm

Challenges for HETG Fabrication

- Spectral Resolution: Achieve grating period of 0.2 μm with precision of < 200 ppm across hundreds of grating facets
- Efficiency over 1.5 decades: Optimize grating bar thickness to provide opacity ~ π phase shift

plus

ultra-thin support membranes high fabrication throughput/yield measurement & verification Calibration Mounting &alignment Robustness etc....

Single-sided grating efficiency (as built)

2500 lpmm (0.4 micron period)

5000 lpmm (0.2 micron period)

INTERFERENCE LITHOGRAPHY

X-ray Lithography

Key technology for replicating a "thin" grating "mask" into many thick, phased gratings with the same period

Fabrication throughput required high intensity, plasma X-ray machine (Hampshire Instruments)

Also requires new micro-gap mask technologies

1993 Hampshire Instruments ceases operation

X-ray lithography no longer viable!

Fortunately, thanks to ~14 years of development, Schattenburg had developed the technology to make thick masks

By locking UV interference to standard grating, he achieves < 150 ppm period control over 100's of gratings

Recovery plan allows HETG to continue on schedule and in budget

INTERFERENCE LITHOGRAPHY

Gold Transmission Grating Fabrication Process

Grating after interference lithography.

Grating after gold plating and resist stripping.

MLS-2001-05-25.02.eps

High Energy Transmission Grating

336 grating facets aligned to <1 arc min tolerance

HEG: inner two rings

MEG: outer two rings

HETG observation of Capella

Raw Detector Image, ACIS Energy Color-coded

Aspect corrected Sky Image, Zeroth and First Orders Selected

Technology marches on...

- New breakthrough: Critical Angle Transmission (CAT) Grating
 - 4x higher dispersion
 - 4-5x higher efficiency
 - Blazed for single sided diffraction
- Fabricated using anisotropic etching of Si

(see talk by Ralf Heilmann)

Critical Angle Transmission

Constructive interference when:

path length difference (PLD) between A' and B'

 $PLD = 2 p \sin(\theta) = m \lambda$

Blazing: high diffraction efficiency when diffracted order coincides with specular reflection off of grating facet

Refractive index and critical angle for x-ray and EUV : $n=1-\delta+i\beta, \ \delta<<1, \ \beta<<1, \ \beta\neq0$ $\theta_c=(2\delta)^{1/2}: \sim1\sim2^{\circ}$

High reflectivity when:

 $\theta < \theta_{c}$, total external reflection

 ⇔ Critical-Angle Transmission (CAT) Grating

CAT Grating for **Constellation X**

Efficiency-weighted Resolving Power with 5 ARCSEC CON-X

Synchrotron measurements of Prototype CAT Grating Efficiency vs. Model

My personal concerns:

Exciting new technologies are in the pipeline

But NASA is under-investing in new technologies for high resolution X-ray spectroscopy (and optics!)

The community of scientists engaged in high resolution X-ray spectroscopy is still too small compared to the potential scientific yield

Important to engage wider community and push for adequate support of technology, modeling, & analysis tools.

Reach out and touch someone!