

X-ray spectroscopy of solar system objects

G. Branduardi-Raymont

Mullard Space Science Laboratory University College London

"X-ray Grating Spectroscopy" workshop Cambridge, Mass., 11 – 13 July 2007

X-ray studies of the solar system

- Reached maturity thanks to *Chandra* and *XMM-Newton* (medium and high resolution spectroscopy)
- Processes involve highly energetic plasmas, particle acceleration, powerful magnetic fields, fast rotating bodies, reprocessing of solar radiation
- 'Next door' examples of widespread astrophysical phenomena

X-ray production in the solar system

• Charge exchange (CX) process

Highly ionised heavy ions collide with neutrals/molecules \rightarrow excited following electron capture ('charge exchange') \rightarrow de-excitation produces X-ray line emission, e.g.

 $H_2 + O^{7+} \rightarrow H_2^+ + O^{6+} + h_V$

Low energy solar wind heavy ions (C, O, Ne - SWCX) : Comets, heliosphere, Earth geocorona, Mars halo <u>Very energetic ambient heavy ions</u> (low-charge ions accelerated, highly charged by stripping, CX): Jupiter aurorae

- Electron bremsstrahlung
- Elastic and K-shell fluorescent scattering of solar X-rays in planetary atmospheres and on surfaces

(Bhardwaj et al. 2007)

X-rays from the solar system

Object	Auroral	Disk	Other
Venus	No	Yes*	
Earth	Yes ⁺⁺	Yes*	Geocorona ⁺
Moon		Yes*	
Mars	No	Yes*	Exosphere ⁺
Jupiter	Yes^ ,++	Yes*	
lo, Europa Io Plasma Torus			particle impacts ++, OVII He α ?
Saturn Comets	Νο	Yes*	Rings [*] +
Asteroids			*
Heliosphere			+
 + SWCX CX ++ Electron bremsstrahlung * Elastic and/or K-shell fluorescent scattering of solar X-rays 			

X-rays from Jupiter

- First detection with the *Einstein Observatory* (Metzger et al. 1983)
- Earth analogy $\rightarrow e^{-}$ bremsstrahlung of <u>auroral</u> origin expected
- Alternative: K-shell line emission from CX of energetic S and O ions, precipitating along magnetic field lines
- ROSAT spectrum consistent with recombination line emission (Waite et al. 1994)
- Ions thought to originate in inner magnetosphere $(8 12R_J)$ Dec. 2000 *Chandra* observations point to origin at > 30 R_J (*Gladstone et al. 2002*)
 - → What are the ion species (C or S) and thus their origin (SW or magnetosphere)?

Jupiter

XMM-Newton – Nov. 2003: EPIC

Jupiter

XMM-Newton – Nov. 2003: EPIC

XMM-Newton – Nov. 2003: EPIC

Jupiter's auroral and disk spectra

Jupiter

XMM-Newton – Nov. 2003: EPIC

Disk emission well fitted with one 'mekal' model (kT = 0.42 +/- 0.02 keV) with solar abundances + line contribution by
 MgXI and SiXIII (solar activity)
 → Consistent with elastic scattering and carbon K-shell fluorescence of solar X-rays

XMM-Newton – Apr. & Nov. 2003: EPIC

Jupiter's North aurora spectra

XMM-Newton – Nov. 2003: EPIC

Auroral soft X-ray lines (C/S?, OVII, OVIII) \rightarrow CX (ion origin?)

Shape of high energy component varies between rev. 0726 and 0727...

Branduardi-Raymont et al. 2007b

UCL

XMM-Newton – Nov. 2003: EPIC

UCL

XMM-Newton – Nov. 2003: RGS

RGS clearly resolves auroral CX emission lines from disk contribution

XMM-Newton RGS results

- FWHM of broad OVII and OVIII lines imply velocities of +/- 5000 km s⁻¹ → energies of ~ 2.5 MeV for O ions
 - → consistent with energies required by models (Cravens et al., 2003; Bunce et al. 2004):
 1 MeV/amu for magnetospheric ions
 100 keV/amu for solar wind
- Broad OVIII shifted to the red by ~4500 km s⁻¹
- Wavelength of broad OVII emission consistent with that of the triplet intercombination line

On Saturn ...

 Disk and polar cap X-ray emissions have similar coronal-type spectra (unlike Jupiter)

• Flux variability suggests X-ray emission is controlled by the Sun

Saturn's rings

- 0.53 keV O-K α fluorescent line (~1/3 of disk emission)
- Scattering of solar X-rays on atomic oxygen in H₂O icy ring material (tenuous atmosphere by solar photo-production)

Bhardwaj et al. 2005b

Mars disk and exosphere (halo)

ICI

- Fluorescent scattering of solar X-rays in CO₂ atmosphere
- Solar wind charge exchange (SWCX) in the exosphere

X-rays from Venus

- Fluorescent scattering of solar X-rays in upper atmosphere
- O-K α , C-K α (and N-K α ?) detected; also CO/CO₂ signature

Earth's aurorae: high X-ray energies

UCL

- Since 1960s hard X-ray observations from balloons (> 20 keV)
- PIXIE experiment on Polar : <u>> 3 keV</u> electron bremsstrahlung

UCL

Earth's aurorae: low X-ray energies

- Evidence for auroral electron bremsstrahlung and N and O line emission below 2 keV from Chandra HRC imaging and simultaneous DMSP F13 electron measurements
- Aurora very variable, with intense arcs and patches (*Bhardwaj et al. 2006*)
- Not yet shown conclusively that ion precipitation has a part in X-ray production
 → needs high res. spectrum!

Dark side of the Moon

- Time variable oxygen emission lines
- Correlation with solar wind flux \rightarrow SWCX in Earth's geocorona

Wargelin et al. 2004

Cometary X-rays

- SWCX with coma neutrals well established emission process
- Cometary spectra reflect state of SW

Lisse et al. 2005

Dennerl et al., in prep.

XMM-Newton / RGS spectrum of Comet C/2000 WM1

(preliminary - no spatial deconvolution applied yet)

SWCX and the soft X-ray background

- Suzaku observations of the NEP → Increase in soft X-ray lines correlated with solar wind proton flux
- SWCX with neutrals in the Earth's magnetosheath → Half or more of oxygen emission comes from Earth's neighbourood
- SWCX ubiquitous throughout the Universe: solar system, interstellar clouds, galactic winds and galaxy clusters

Thank you!