AGN EVOLUTION IN THE UNIVERSE'S DFNSFST FNVIRONMENTS

Becky Canning Stanford University

Ashley King, Emil Noordeh, Steven Ehlert

S.Allen, D.Applegate, N. Brandt, M. Brodwin, B. Floyd, P. Kelly, A. von der Linden, B. Luo, A. Mantz, G. Morris, Y. Xue, SPT Collaboration

SMBHs play a fundamental role in galaxy evolution.

- SMBHs affect their larger environment.
- Environment is inextricably linked to galaxy/SMBH evolution.
- AGN can also be a contaminant for ICM studies.

Silk & Mamon 2012

- SMBHs play a fundamental role in galaxy evolution.
- SMBHs affect their larger environment.
- Environment is inextricably linked to galaxy/SMBH evolution.
- AGN can also be a contaminant for ICM studies.

MOTIVATION

Saunders et al. 2016

MOTIVATION

- SMBHs play a fundamental role in galaxy evolution.
- SMBHs affect their larger environment.
- Environment is inextricably linked to galaxy/SMBH evolution.
- AGN can also be a contaminant for ICM studies.

Sun et al. 2007

- SMBHs play a fundamental role in galaxy evolution.
- SMBHs affect their larger environment.
- Environment is inextricably linked to galaxy/SMBH evolution.
- AGN can also be a contaminant for ICM studies.

MOTIVATION

Mapping where SMBH live and their host galaxy properties can tell us about the conditions required to trigger them

- X-ray AGN quenched in low-z clusters.
- Are X-ray AGN triggered at high-z?

 f_{AGN} in field cluster .⊆ $^{NBW}_{MO^{-1}}$

See Martini et al. 2009, 2013; Haines et al. 2009

 f_{AGN} in field f_{AGN} in cluster 10_0

WHAT DO WE WANT TO KNOW?

Challenging as:

- Most massive clusters are best (easily characterized+large variation in ICM density) but lots of clusters would require a large area survey
- AGN and host galaxy properties are diverse
- AGN are rare in clusters yet abundant in background and spectroscopically identifying them is expensive
- For X-ray AGN cluster itself presents a challenging background

Quantitatively how do AGN depend on host cluster and host galaxy properties?

WHAT DO WE WANT TO KNOW?

Quantitatively how do AGN depend on host cluster and host galaxy properties?

Challenging as:

- Most massive clusters are best but lots of clusters would require a large area survey
- AGN and host galaxy properties are diverse
- AGN are rare in clusters yet abundant in background and spectroscopically identifying them is expensive
- For X-ray AGN cluster itself presents a challenging background

Our solutions:

- Use pointed observations in Chandra archive
- Multi-wavelength AGN selection and data for host galaxies
- Make differential measurements. Utilize knowledge of how large scale structure evolves to statistically combine signals.
- Requires high-spatial res X-ray obs. Developed metric to determine whether source on cluster background is point-like or extended

WHAT DO WE WANT TO KNOW? Quantitatively how do AGN depend on host cluster and host galaxy properties?

Challenging as:

 For X-ray AGN cluster itself presents a challenging background

Our solutions:

- Use pointed observations in Chandra archive
- Multi-wavelength AGN selection and data for host galaxies
- Make differential measurements. Utilize knowledge of how large scale structure evolves to statistically combine signals.
- Requires high-spatial res X-ray obs. Developed metric to determine whether source on cluster background is point-like or extended

CATS - CLUSTER AGN TOPOGRAPHY SURVEY

17.0 SZ selected 16.5X-ray selected $\sum_{0}^{\circ} 16.0^{-1}$ ្អ 14.5 ១ 14.0 14.0 13.5 13.0^{\perp} 1.0 0.5 0.0 Redshift, z_{cl}

1.5

- > 25 Ms of Chandra data (~500 clusters), VLA FIRST+ATCA, Spitzer+Wise, 293 orbit HST...
- ~40,000 X-ray AGN. ~11,000 radio AGN sources (~4,000 point sources, ~7000 extended)
- Differential analysis of superposition of cluster + field population. Cluster population is split into satellites and BCGs.
- 'No evolution' means 'no evolution beyond that of the field' population

Canning et al.; King et al.; Noordeh et al.

WHAT HAVE WE FOUND?

• I will present binned X-ray results but for the radio I will present the unbinned full model results

MASS AND REDSHIFT

MASS V'S REDSHIFT

X-RAY AGN

MASS V'S REDSHIFT

Noordeh et al.

Canning et al.

X-RAY AGN

MASS V'S REDSHIFT

Noordeh et al.

X-RAY AGN SO FAR... MASS DEPENDENCE... BUT

- No simple relation: Steepness of number density v's cluster mass relation is dependent on AGN flux.
- Codes now running which allow this flexibility.

Canning et al.

MASS V'S REDSHIFT

Number density AGN, Nden $\propto (M_{500})^{\alpha_M} \times (1+z)^{\alpha_z}$

mass dependence. No BCG mass dependence.

King et al.

evolution.

DYNAMICAL STATE

CLUSTER DYNAMICAL STATE

Cluster morphology Symmetry-Peakiness-Alignment see Mantz et al. 2015

Canning et al.

CLUSTER DYNAMICAL STATE

(c) Least Relaxed Clusters

Canning et al.

CLUSTER DYNAMICAL STATE

Cluster morphology Symmetry-Peakiness-Alignment see Mantz et al. 2015

WHAT'S NEXT?

- Full dataset for X-ray, radio and IR AGN.
- formation.
- in clusters.

Comparison with galaxy population distributions particularly star

Comparison to models of merger rates and environmental processes

- eROSITA: superb understanding of low-z halo mass dependence
- Athena: great statistics on higher redshift $(z \sim I)$ AGN in clusters
- Lynx: AGN at the epoch of cluster formation

WHAT'S NEXT?

WHAT'S NEXT?

2 keV, z = 3 cluster + AGN (5 × 10⁻¹⁷ erg/cm²/s)