High-speed ejecta from the high-mass gamma-ray binary PSR B1259-63/LS 2883

George Pavlov (Pennsylvania State University) Oleg Kargaltsev (George Washington University) Jeremy Hare (NASA GSFC)

> 20 Years of Chandra Science Symposium Boston 3 December 2019

Binary orbit (sky projection)

PSR B1259-63: Spin period 48 ms, spin-down age 330 kyr, Edot =8×10³⁵ erg/s, *B*=3×10¹¹ G

LS 2883: $M = 15 - 31 M_{\odot}$, $L = 6 \times 10^4 L_{\odot}$, d = 2.6 kpc, fastspinning Be (late O) star, *stellar* wind -- dense and slow in the equatorial disk (inclined by ~35° to the orbital plane), tenuous and fast outside the disk

Binary parameters: Orbital period 3.4 yrs, semi-major axis 6 au (3 mas), eccentricity
0.87, inclination 153°.
Recent *periastrons*: 2010 Dec 14, 2014 May 4, 2017 Sep 22.

Collision of pulsar wind with stellar wind \rightarrow intrabinary shock \rightarrow particle acceleration \rightarrow nonthermal emission from radio to γ -rays

(Dubus et al. 2013)

```
Pulsar wind (PW) is confined by
stellar wind if the thrust ratio
η = Edot/(Mdot v<sub>w</sub> c) < 1
(vice versa if η >1).
(Tavani & Arons 1997)
```

Either shocked or unshocked PW can leave the binary and interact with the ISM forming a pulsar wind nebula (PWN)

We proposed to look for a PWN outside the binary, using the excellent angular resolution of Chandra.

First high-res observation

2009 May 14

25 ks ACIS-I exposure

10089

(Pavlov et al 2011)

~4σ detection of asymmetric extended emission. Termination shock of PW?

Three observations in binary cycle 2011 - 2014

2011 Dec 17

Extension is seen clearly

Three observations in binary cycle 2011 - 2014

2013 May 19

Extended object separated from the binary?

(Kargaltsev et al 2014)

Three observations in binary cycle 2011 - 2014

2014 Feb 8 (DDT)

2011 Dec 17 2013 May 19 2014 Feb 8

Extended object moving from the binary along its major axis, fading with increasing distance.

High apparent velocity, **v~0.1 c**, perhaps with acceleration. No evidence of deceleration.

(Kargaltsev et al. 2014; Pavlov et al. 2015)

ACIS-I exposures 60-65 ks

2015 Apr 21

2016 Jan 12

2017 Jan 6

2017 Apr 24 (DDT)

ACIS-I exposures 60-65 ks

2017 Jul 20

Brightening disappeared. Clump moved further, Yet another shape. Second clump disappeared

2015 Apr 21

New clump detected moving in same direction with similar velocity

2016 Jan 12

Shows strange "*whiskers*" in Jan 2017, *brightening* and 2nd *clump* [?] in Apr 2017

2017 Jul 20

2017 Jan 6

2017 Apr 24

Clump separation from the binary vs time

Two binary cycles

 $1 \operatorname{arcsec} = 3.4 \times 10^{16} \operatorname{cm}$

Characteristic size of the "clump" ≈ 3"≈ 10¹⁷ cm

Clump separation from the binary vs time

Clump separation from the binary vs time

Accelerated motion: a better model

If the clump was launched at 2014 periastron with a low speed, the acceleration is

 $a = 47\pm 2 \text{ cm/s}^2 =$

= 14,800±600 km/s/yr

*V*_{app} ≈ 0.16c at *t* = *P*_{orb} =3.4 yr

V ≈ 0.2 c if motion in orbital plane

Power-law spectra (confidence contours)

Normalization vs photon index Γ , with lines of constant flux (0.5-8 keV)

2017 Jan - Jul

Variations of Γ are statistically insignificant; average $\Gamma = 1.45 \pm 0.11$.

0.5 – 8 keV flux evolution in 2 binary cycles

<u>Luminosities</u> $L_X \sim (2 - 9) \times 10^{31} \text{ erg/s}$ at d = 2.6 kpc;

~0.7% - 3% of the binary's X-ray luminosity far from periastron. Most likely emission mechanism is <u>synchrotron radiation</u> from a cloud of e⁺/e⁻ supplied by pulsar (Inverse Compton would require too many e⁺/e⁻).

Physical parameters:

 $B_{eq} \sim 100 \ \mu\text{G}, \quad E_{electron} \sim 10 - 100 \ \text{TeV},$ total energy $W \sim 10^{41} \ \text{erg}$ in volume $\sim 10^{51} \ \text{cm}^3$; $W << P_{bin} \ Edot = 7 \times 10^{42} \ \text{erg}$

Problem: Isolated e⁻/e⁺ clump would be immediately <u>decelerated and</u> <u>destroyed</u> by drag force in the interstellar medium: $f \sim \rho_{amb} v^2 A$, but clumps show *no deceleration*!

Likely, they are loaded with ions from the stellar wind disk and move in a very low density medium

If the *acceleration* is real, it could be *due to ram pressure of pulsar wind* (but not a 'Compton rocket')

Possible scenario:

During most part of the binary period the shocked PW leaves the binary in the apastron direction and carves a <u>low-density channel</u> in ambient medium

low-density channel

When the pulsar crosses the disk, a clump of <u>mixed disk matter and relativistic electrons</u> (clump mass ~10²¹ g) is formed and ejected into the channel

The clump is pushed "from behind" and perhaps <u>accelerated by the shocked PW</u> along the channel until the clump speed approaches the shocked PW speed, $\sim 0.1c - 0.3 c$.

Such a scenario was supported by numerical simulations

(Barkov & Bosch-Ramon 2016)

Density distribution (colors) and velocities (arrows) in the orbital plane 680 d after periastron.

Azimuthally averaged radial velocities for two sectors of orbital plane at different times.

Open Questions

- Are the clumps indeed launched near *periastron passages*?
- Do they indeed move with a nearly constant <u>acceleration</u>?
 Why could the acceleration be different in different cycles?
- Is the clump <u>brightening</u> due to internal processes (e.g., magnetic field reconnection in turbulent plasma) or external ones (e.g., collision with a previously launched clump)? How long do the brightening episodes last, what are the peak luminosities?
- What is the origin of the <u>whiskers</u>? Instabilities in the clump plasma? How fast do they evolve?

Open Questions

 What is the nature of the apparent 2nd clump observed on 2017 Apr 24?

Possible new clump -2" from binary

Not seen in next observation 97 days later

Possible ejection of another, slower moving clump?

Or launched at a later date, well after periastron?

Or a projection effect (different clumps are launched in different directions and fade with different rates)?

Open Questions

 How clump parameters are connected with the *post-periastron* γ-ray flares?

Fermi GeV γ-ray flares after periastrons of 2010, 2014, 2017

The flares after 2017 periastron had higher photon flux and fluence ($L_{\gamma} > Edot$ in some of them), faster variability (~1.5 min), lasted longer (up to 90 day after periastron) – Johnson et al 2018.

Such differences can affect clump ejection and properties – higher clump mass, lower velocity, higher brightness, larger size in 2017-2021 cycle ?

To answer these questions, we should keep monitoring this system with Chandra with short enough cadence

Three observations in the 2017-2021 binary cycle

We see extended emission (perhaps a nascent slow-moving clump) but it is not separated from the binary yet. <u>New observations are needed in the most interesting part of the orbit</u>.

Summary of findings:

- New (so far unique) phenomenon discovered: Ejection of X-ray emitting clumps from a high-mass gamma-ray binary, accelerated to an apparent velocity V_{app} ~ 0.1c
- Typical clump sizes up to 10,000 a.u. Clumps change their shape and brightness. X-ray luminosity up to 10³² erg/s, power-law spectra with Γ ~ 1.2 – 1.6, no softening with time
- Clumps showed somewhat different behavior in two binary cycles (e.g., different speed/acceleration, steady fading vs occasional brightening)

Possible interpretations:

- Clumps consisting of relativistic electrons and stellar (disk) matter are ejected during periastrons passages due to interaction of the pulsar wind with the equatorial disk of the high-mass star
- Clumps are possibly moving in the pulsar wind, whose ram pressure accelerates them to the very high speed
- X-ray emission mechanism is likely synchrotron radiation of relativistic electrons of the shocked pulsar wind mixed with stellar matter; possible internal shocks within the clump

Thank you!

