

Chandra's Legacy of Discovery in Transient Astrophysics

Institut Spatial de McGill

Daryl Haggard McGill University Canada Research Chair

X-ray Transients

- This is a *technique* rather than a study of a *class* of source
- Means different things to different people
- What does "X-ray transient" mean to you?

Classes of X-ray Transients

- Gamma-ray bursts
- Supernovae & SNR
- Tidal Disruption Events
- BH & NS Outbursts
- Stellar Outbursts
- Jupiter

... and more !?!

Schematic of Variables/Transients

High Energy Time Domain Desirati

Discovery & Monitoring

- All Sky Monitor and/or Localization
- Science drivers: GW cntrparts, GRBs, SNe shock breakout, accretion, tidal disruptions
- High Resolution

Rapid Response

- Rapid slew(< hr)
- Science drivers: GW cntrparts, GRBs, stellar flares/space weather, transients
- High Availability

High Time Resolution

- Sub-ms timing
- Science drivers: Strong gravity, neutron star physics, XRB/AGN physics, QPOs
- High Sensitivity

Chandra's Unique Niche

- Sub-acrsec resolution
- High sensitivity
- Target of Opportunity Programs
- Joint Facility Programs
- Archives

X-ray Catalogs & Archives

~374,000

detections

• Bayesian determination of multi-band aperture photometry, time variability, and hardness ratios.

~315,000

unique sources

- PSF modeling is used to determine source location and properties, improving off-axis sensitivity.
- Expanded Model List for Spectral Fits to sources with more than 150 counts.
- Extra Data Products available: full field event lists, multi-band images, limiting sensitivity maps, merged source lists, photometry probability density functions, pulse-invariant spectra and optimal-ly-binned light curves in addition to more products already available in release 1.

CSCview

CSCview is a GUI application which provides direct access to the catalog via user-specified queries. Source properties and data products can be sent to GUI data discovery, plotting, and analysis tools like DS9, Topcat, Aladin, etc. using technology developed by the IVOA.

1999-2014

years of observations

10382

imaging observations included

http://cxc.cfa.harvard.edu/csc/

NS Merger!

Chandra News

Issue 26, Summer 2019

20 Years of Chandra

t=2 days	t=9 days	t = 15 days	<i>t</i> = 16 days
GW1708	17 — 🧕		
		Host Galax	ky (NGC 4993)
		25	

GW170817 confirms NS merger origin for short GRBs

- Accretion onto central compact remnant launches relativistic jet
- Shocks within the jet emits short pulse of Gamma-rays
- Relativistic jet shocks the ISM, producing synchrotron afterglow emission from X-ray through radio

GW170817 vs. sGRBs

- GW170817's rising X-ray emission & low luminosity (despite being close!) set it apart from most sGRBs
- After peak, the decline is consistent with SGRB afterglows
- Expected from a jet pointed away from our line of sight

GW170817 SED

 Radio-to-X-ray SED shows no evolution in the first ~360 days after merger

 $F_v \propto v^{-\alpha}$, α = 0.6

- Radio & X-ray from non-thermal synchrotron afterglow emission
- UV/optical/NIR from kilonova until ~100 days post-merger
- Relativistic outflow emission dominates UV/optical/NIR after 100 days

GW170817 SED

 Radio-to-X-ray SED shows no evolution in the first ~360 days after merger

GW170817 Afterglows

- X-ray and radio observations of GW170817 over the first ~743 days
- Emission modeled by off-axis (~30°) structured relativistic jet w/ $E_{tot} \sim 10^{50}$ erg and low density medium (n ~ 10⁻² cm⁻³; blue lines)
- Anticipated emission from the deceleration of the Kilonova ejecta, the "Kilonova afterglow" (red lines)
- Next Chandra obs early March 2020!

LIGO-Virgo 01 & 02

LIGO-Virgo O3 (*so far*)

BBH	25
NSBH	5
BNS	4
MassGap	2
Terrestrial	2
Retractions	14
Total	38

LIGO alerts are now *public*!!

Fast X-ray Transients

- Likely binary neutron star mergers w/ magnetar remnants
- New IDs in Chandra Deep Field South (CDF-S XT1 & CDF-S XT2)
 - CDF-S XT1 (z = ?): could be off-axis/ low-luminosity sGRB or TDE of a white dwarf by IMBH
 - CDF-S XT2 (z = 0.738): consistent with X-ray transient powered by a millisecond magnetar
- Plus three more Dacheng Lin's talk this session
- Candidate explanation for FRBs!?!

New Sgr A* VLT/GRAVITY NIR Flares

GRAVITY Collaboration 2018

Direct measure of Sgr A*'s black hole event horizon/ISCO?!?

- Monitoring S0-2 during periapse
- 3 NIR flares detected from Sgr A*'s accretion flow
- Energetics consistent with magnetic reconnection or mag. shocks between e⁻ and hot gas near ISCO
- Flare durations 30-90 minutes, similar to e⁻ cooling time or dispersal due to diff. rotation
- Peak flux 2x Sgr A*'s median K_s-band flux (similar to S0-2)

Sgr A* Flares

Simultaneous Chandra-Spitzer Obs

X-ray/IR Cross-Correlations (ZDCF)

[**Boyce**, **DH**, et al, 2019]

X-ray/IR Timelags

Tidal Disruption Events

- Tidal disruption events from capture or "spaghettification" of unlucky stars by black holes
- Subsequent accretion of the star's mass onto the SMBH
- ASASSN-14li •
 - 131-second quasi-periodicity from likely tidal disruption event
 - periodicity originates from very close to the SMBH's event horizon
 - BH seems to be spinning rapidly (a>0.7)
- More in Jack Steiner's talk!

<u>a</u>

201 ŝ

Tidal Disruption Events

- Tidal disruption events from capture or "spaghettification" of unlucky stars by black holes
- Subsequent accretion of the star's mass onto the SMBH
- ASASSN-14li
 - 131-second quasi-periodicity from likely tidal disruption event
 - periodicity originates from very close to the SMBH's event horizon
 - BH seems to be spinning rapidly (a>0.7)
- More in Jack Steiner's talk!

Tidal Disruption Events

- Tidal disruption events from capture or "spaghettification" of unlucky stars by black holes
- Subsequent accretion of the star's mass onto the SMBH
- ASASSN-14li
 - 131-second quasi-periodicity from likely tidal disruption event
 - periodicity originates from very close to the SMBH's event horizon
 - BH seems to be spinning rapidly (a>0.7)
- More in Jack Steiner's talk!

And soooo many more...

- Super-bright supernova, e.g., SN 2016iet which may be a pulsational or pair instability SNe
- Changing-look quasars & other QSO variability
- SMBH QPOs or quasi-periodic eruptions, e.g., GSN 069
- ULX & extreme variables, V404 Cygni & MAXI J1820
- Pulsars & Magnetars
- Stellar flares / CMEs
- X-ray dust tomography

Summary

 Time domain and multi-messenger astronomy are experiencing a HUGE expansion w/ LIGO-Virgo (and KAGRA!) and LSST online soon

- X-ray observatories make excellent / unexpected contributions (Chandra, XMM, Swift, Fermi, MAXI, INTEGRAL, NuSTAR)
- Rapid response and high sensitivity/resolution don't usually go together
- Need strategic joint-observing programs (multi-wavelength, multimessenger, multi-mission) to optimize for time domain science

