INTRODUCTION

Ultraluminous X-ray sources (ULXs; see [1]) are X-ray binaries with luminosity exceeding the Eddington limit for an accreting stellar black hole (∼10³⁰ erg s⁻¹), challenging our understanding of binary evolution and accretion physics.

ULXs are of great importance to gravitational wave research (as progenitors of compact object mergers, [2]) and cosmology (pre-heating of the intergalactic medium [3]).

While studies of individual ULXs provide input for accretion physics, statistical studies of ULX populations in the context of stellar population parameters of their host galaxies probe their formation and evolution. The results of statistical studies constrain binary population synthesis models [4].

OBJECTIVES

1. Compile the Heraklion Extragalactic CATaloguE (HECATE), a catalog of all known galaxies in the local Universe (D ≤ 200 Mpc) with distances, stellar population parameters, and AGN content where available.
2. Construct the most up-to-date census of ULXs by cross-matching HECATE with Chandra Source Catalog 2.0
3. Study the rate of ULXs as function of the host galaxy’s star formation rate (SFR), stellar mass (M_), and metallicity.
4. Study the high end of the luminosity function (LF) of High Mass X-ray Binaries (HMXBs).

CREATING THE GALAXY & ULX CATALOGS

HyperLEDA

NED

redshifts

Select galaxies with radial velocity ≤1400 km/s

Distance

Galaxy sample

Combine measurements

e-independently for 11% of the galaxies

Infer/hubble flow distances for the rest 89% of the galaxies and their uncertainties accounting for local overdensities, peculiar velocity, systematic errors...

All-sky surveys

for IRAS galaxies

WISE

PanSTARRS

GALEX

SDSS

2MASS

Sample

SOSS footprint

Heraklion Extragalactic CATaloguE

~163000 galaxies at distance up to 200 Mpc

Basic properties

Position, morphology, distance...

Multi-wavelength data

UV, X-rays, SII, Hα, Lyα, SED

Stellar parameters

Mass, metallicity, nuclear activity...

Cross-match with Chandra Source Catalog 2.0

ULX populations & connection with their environment

RESULTS

1. Donors of ULXs can be either HMXBs traced by star formation rate (SFR), or Low Mass X-ray binaries (LMXBs) and thus traced by stellar mass (M_). The number of ULXs per galaxy in bins of the M_–SFR plane is shown in Fig. 1.

We fit for the scaling of the number of ULXs with both stellar population parameters in late-type galaxies:

\[N_{\text{obs}} = \alpha \times SFR + \beta \times M_* + N_{\text{bkg}} \]

where \(N_{\text{bkg}}\) is the number of observed sources above \(10^{39} \text{ erg s}^{-1}\), and \(N_{\text{bkg}}\) is the expected number of interlopers. \(\alpha\) and \(\beta\) are the scaling factors for SFR and M, respectively. For all late-type galaxies (LTGs) we find (black in Fig. 2):

\[\alpha = 0.55 M_{\odot}^{-1} \text{yr} \]

in good agreement with the HMXB LF of [5] (∼0.56 HMXBs above \(10^{39} \text{ erg s}^{-1}\) per \(M_* \text{ yr}^{-1}\) star formation rate), and

\[\beta = 3.5 \times 10^{-12} M_{\odot}^{-1} \]

in agreement with the LMXB LF of [7] (∼4 LMXBs above \(10^{39} \text{ erg s}^{-1}\) per \(10^{10} M_{\odot}\) stellar mass).

As illustrated in the same figure, we systematically find evidence for higher \(\alpha\) as we go from early spirals (red) to late spiral and irregular galaxies (blue).

2. We find ~1.7 ULXs per \(10^{11} M_*\) stellar mass in early-type galaxies, with elliptical galaxies hosting ~3 times as many ULXs as lenticular galaxies, supporting the findings of [6].

3. Irregular galaxies contain more ULXs per star formation rate (~1.8 \(M_{\odot} \text{ yr}^{-1}\)) than Sa-Sb spirals (~0.3 \(M_{\odot} \text{ yr}^{-1}\)) and Sc-Sd spirals (~0.7 \(M_{\odot} \text{ yr}^{-1}\)).

We find that the excess is negatively correlated with the host’s metallicity in agreement with [8]. In addition, we find an excess of ULXs in low mass galaxies (Fig. 3) with respect to the average relation of ULXs and SFR, M_

4. The median distance of the ULXs from the center of the host galaxy increases going from early- to late-type galaxies.

REFERENCES