Obscuration/orientation effects in a sample of 0.5<z<1 3CRR sources observed by Chandra

multi-wavelength emission, an unknown fraction of active galactic nuclei (AGN) remain obscured, their nu ent obscuration by massive amounts of material. One way to select AGN samples that are orientation-unbi ces) is low frequency radio, where the selection is based on extended radio lobes. Radio data also provid ia the radio core fraction (R_{CD}). intrinsically bright, dio data also provide an

ncy (178 MHz) selected, Chandra observed sample of highredshift ed at inte Similarlv to the hial

1. Sample

Complete, flux limited (10 Jy at 178 MHz), 3CRR sample (Laing et al. 1983) of 36 radio sources with 0.5 < z < 1. Includes 13 quasars, 22 NLRGs and 1 LERG (8 are compact steep-spectrum sources - CSS,; no beamed sources). At low frequencies (dominated by emission from radio lobes) radio selection results in a sample with little/no orientation bias.

All sources are FRIIs = all are AGN.

 $\overline{L_{core}}(5G\,H\,z\,)$ Radio-core fraction $R_{CD} =$ provides an $L_{lobe}(5GHz)$ estimate of orientation.

Great sample to study orientation effects in AGN (although only 10% of AGN are radio-loud).

We compare this sample with the high-z (1<z<2) 3CRR sample (38 sources) from Wilkes et al. (2013).

3. X-ray Hardness Ratio vs. N_H

HR becomes larger (harder) with increasing NH

But: 5 NLRGs with highest $N_{\rm H}$ lie off the absorbed power law models and require additional soft excess emission from: scattered intrinsic light, extended X-ray emission or jet emission.

6. N_H distribution

NLRGs

Quasars: low $N_H < 10^{22.5} \text{ cm}^{-2}$ (both samples) $N_{H} > 10^{22.5} \text{ cm}^{-2}$ (high-z) $N_{H} > 10^{21} \text{ cm}^{-2}$ (medium-z) New population at medium-z: low-N_H NLRGs.

7. Geometry

ange of L/L_{Edd}

compact torus high L/L_{Edd} - higher gas supply?

//// qac

NLRC

Fig. 1a Total, extended, rest-frame 178 MHz radio luminosity. Quasars and NLRGs

match in L_{radio} -> similar intrinsic Ls

NLRGs are 10-1000x fainter than guasars in L_X -> larger obscuration in NI RGs

4. HR not a good indicator of high N_H 5. Correlations with R_{CD} / Unification

12 (190) () HLBS

When obscuration increases-> Lx decreases and HR becomes harder (red models). But highly obscured NLRGs (with lowest Lx) require an additional soft component (black model). Hence ~20% of sources (with high NH) at high-z have L_X underestimated by 10-1000 if HR is used -> lower obscured AGN fraction and steeper LF.

At medium-z X-ray spectra are more complex as *Chandra* probes

2. X-ray Hardness Ratios (HR)

X-rav Hardness Ratio: HR =

(H = 2-8 keV counts, S = 0.5-2 keV counts)

H + S

and intrinsic equivalen spectral fits *(right)* a

Strong dependence of L_X/L_{radio} and $N_{\text{H}}\,$ on R_{CD} is consistent with orientation dependent obscuration as

But 5 low-N_H (<10²² cm⁻²) NLRGs don't fit as NLRGs with a large range of intrinsic N_H=10^{21.0-23.5} cm⁻² exist at similar viewing angles (-3 < log R_{CD} < -2). These low-N_H NLRGs have high L_x/L_{radio}, soft HR, low 30 μ m emission) and possibly low L/L_{Edd}.

Summary

We study a complete, medium redshift (0.5 < z < 1), low frequency (178MHz) radio selected, and so unbiased by orientation sample of 3CRR sources which includes: 13 quasars, 22 NLRGs and 1 LERG matched in L(178MHz).

Quasars are soft and bright in X-rays and have high R_{CD} implying low obscuration and face-on inclination

NLRGs have 10-1000x lower L_X(2-8keV), wide range of X-ray hardness ratios, and low R_{CD} implying wide range of obscuration ($N_H > 10^{20.5} \text{ cm}^{-2}$) and high inclination.

The observed trend of increasing obscuration with decreasing radio core fraction R_{CD} is consistent with orientation-dependent obscuration as in Unification models. However, a population of low-N_H (<10²² cm⁻²) NLRGs, is found at similar viewing angles as NLRGs with higher N_H (10^{22-23.5}) implying a wider range of L/L_{Edd} ratios in the medium-*z* sample (extending to lower values) than in the high-*z* sample.

8 NLRGs (22% of sample) show CT L([OIII])/L_X(2-8keV) and/or L(30 $\mu m)/L_X$ (2-8keV) ratios.

The ratio of unobscured (N_H<10^{22}) to obscured (N_H>10^{22}) sources is 1 (same for high-z). Unobscured/Compton-thin/Compton-thick ratio=2:1.5:1 (high-z sample: 2.5:1.4:1)

8. L/L_{Edd}

At lower L/L_{Edd} circumnuclear dust+gas clouds have a broader range of N_H (Fabian+ 2008) and the dusty torus becomes clumpier and puffier (Ricci+ 2018) resulting in lower mid-IR emission -> low-N_H NLRGs possibly have lower L/L_{Edd} -> the medium-z 3CRR sample has a large range of L/L_{Edd} extending to lower values compared to the high-z sample, which has high L/L_{Edd} due to higher gas supply at high-z

9. Compton-thick (CT) sources

L([OIII]) tracks radio and intrinsic X-ray Ls in broad and narrow-lined AGN and is used as a measure of intrinsic L_X (Jackson & Rawlings 1997, Mulchaey+ 1994).

High L([OIII])/Lx(2-8keV) and/or high L(30μ m)/ $L_x(2-8keV)$ suggest a Compton-thick (CT) source. We find 6 CT+2 borderline CT candidates = 22% of the medium-z sample (similar to 23% at high-z sample).

softer-X-rays.

calculated using BEHR (Park+ 2006) soft HR, X-ray bright -> low obscuration (N_H) NLRGs: wide range of HR, X-ray faint -> range of $N_{\rm H}$