

A Confounding History

SpARCS1049+56 is a massive galaxy cluster residing at a redshift equal to 1.7; while there are several fascinating features in this cluster, perhaps the most captivating is its extremely elevated stellar formation rate ~ $860 M_{\odot}/yr$ which is offset considerably from the BCG.

UV/NIR[1][2]:

- AGN-removed stellar formation rate (SFR) at $856 \pm 128 M_{\odot}$
- Extended and Luminous Tidal Tail $(L_{IR} = 6.2 \times 10^{12} L_{\odot})$
- massive molecular gas reservoir ($\sim 10^{11} M_{\odot}$)

$\mathbf{Radio}[3]$:

• Highly compact, surrounds the BCG, and relatively weak $(4.4 \pm 3.5 \times 10^{33} \text{W})$

How do we explain this SFR?

- Major Merger: The Brightest Cluster Galaxy (BCG) at the heart of Sp1049 undergoing a merger with a BCG of a neighboring cluster
- Several Minor Mergers: Sp1049's BCG is in the act of cannibalizing smaller satellite galaxies in the cluster
- Cooling Flow: extremely hot ($\sim 10^8 \text{K}$) intra-cluster medium, comprised of gas and dust residing at the heart of the cluster's Dark Matter Halo, succumbs to its own gravitational potential and triggers a mass cooling-flow

Right Ascension (12000)

Figure 1: Central image of *Sp1049+56* in the broad band (0.5 - 7.0 keV). The unbinned image has been smoothed with a Gaussian of $\sigma = 3$. The yellow cross denotes the location of the BCG: 10:49:22.6+56:40:32.6.

Explaining the Formidable Stellar Formation Rate of a Massive Galaxy Cluster at $z \sim 1.7$

Carter Rhea Department of Physics and Astronomy, l'Université de Montréal Advisor: Julie Hlavacek-Larrondo

Multi Wavelength Imaging

Figure 2: Central image of SpARCS 1049+56 using the HST F105W and F160W filters as the background image. The cyan contours correspond to 4σ X-ray emission between 0.7 and 1 keV, while the white and red contours repreent the Spitzer MIPS 24 micron and VLA CO (1-0) emission, respectively. This image clearly demonstrates that the ICM is cospatial with the region of star formation. Therefore, the star burst appears to be diven by an ICM cooling flow.

X-ray Analysis

The data was spectroscopically fit using **Xspec** Due to the minimal counts (~ 250), the coefficient of surface brightness, c_{sb} , acts as the strongest indicav12.10.1, Sherpa v1, and python v3.5. An abundance ratio of 0.3 was assumed for all fits. The tion of a cooling flow in Sp1049. The c_{sb} is the ratio background region was chosen to be off chip at an of soft-band fluxes for the inner and outer regions: offset of a considerable distance ($\approx 1Mpc$) and was kept consistent for all exposures. We fit each observation's source and background regions simulta-We are interested in the following regimes: neously using Xspec's native implementation of the c-statstic. The background models both replicate the Cosmic X-ray Background (CXB) [4] [5]. Both models were tested for all spectroscopic results; we found no significance in results regardless of Having calculated the c_{sb} after prudent data reducthe background model employed. Furthermore, we tion, we discover that the cluster lies well within the tested two absorbed thermal emission models: **apec** range of a cool core cluster. and mekal. The final fits were calculated using the McDonald background model and an absorbed **apec** model. The fits yield a temperature of $kT=5.71 \pm$ 1.57keV and a soft-band (0.5 - 2.0keV) unabsorbed X-ray luminosity of L= $4.29^{\pm 0.19}e^{44}$ ergs/s. These val-Table two key indicators. ues are consistent with a massive galaxy cluster harboring a cooling core.

A Cooling Flow?

$c_{sb} =$	F(R < 40 kpc)	(1)
	$\overline{F(R < 400 kpc)}$	

Non Cool Core	$c_{sb} < 0.075$
Moderate Cool Core	$0.075 < c_{sb} < 0.155$
Strong Cool Core	$c_{sb} > 0.155$

Indicator	Value	Lower	Upper	
Net Count Rate	0.093	0.048	0.172	
Net Energy Flux	0.184	0.095	0.340	
1: Coefficient of Surface Brightness calculations using				

Figure 3: Surface brightness coefficient of SpARCS 1049 compared to South Pole Telescope Clusters taken from McDonald et al. 2013[5]

• X-ray Provenance: While the field is clearly muddled with several intervening structures, we have several indicators that the emission is likely coming from z = 1.7

• Cool-Core: Based off X-ray data, Sp1049 likely harbors a significant offset cooling flow which can explain the elevated stellar formation rate

• Intra Cluster Light: Sp1049 demonstrates the creation of the ICL taking place *in-situ* due a cooling flow

• **Feedback**: Clear indication of a lack of suppression by the central SMBH on the stellar formation

[1]	We

•	We
-	Em
-	Per

Cosmological Context

References

ebb, T. et al. 2015 ApJ [2] Webb, T. et al. 2017 ApJ [3] Trudeau, A. et al. 2019 ApJ [4] Sun, M. et al. 2009 ApJ [5] McDonald, M. et al. 2013 ApJ [6] Zou, S. et al. 2016 MNRAS

Contact Information

eb: http://udem.craq-astro.ca/ ail: carterrhea@astro.umontreal.ca rsonal Site: https://crhea93.github.io/