Modeling High-Mass X-ray Binary Formation in the Chandra Era

Tim Linden

with: Jay Gallagher, Vicky Kalogera, Andrea Prestwich, Jeremy Sepinsky, Francesca Valsecchi, Andreas Zezas
Numerical Modeling of HMXBs

- Have Evolutionary Models for the evolution of single stars (use Single Star Evolution)

- At each step in stellar evolution, calculate if there are important binary interactions, these generally happen on a faster timescale than stellar evolution

- Make adjustments to the stellar properties (assume the star is in equilibrium) based on the outcome of the binary interaction, and continue single star evolution
HMXBs Formed by Starbursts

- Largest population of HMXBs is formed in the first 4-10 Myr after star formation
- The number of HMXBs is highly luminosity dependent
 - Different types of HMXBs!
- Also depends strongly on metallicity
Roche Lobe Overflow vs. Wind Accretion

- Two Methods for producing bright X-Ray emission from accretion onto a compact object

- These methods require different evolution pathways:
 - Different orbital separations
 - Different evolution states for the donor star
 - Different epochs of mass transfer
Wind Accretion HMXBs

- Luminosity depends on:
 - Wind strength of the donor star (evolution state, metallicity)
 - Orbital Separation

- These systems have low X-Ray luminosities

- All systems with a main sequence donor have a luminosity below \(10^{34}\) erg s\(^{-1}\).

- Metallicity greatly influences system formation (see slides below)
Wind Accretion HMXBs

- One method to form very bright HMXBs, systems with very strong winds
 - e.g. (super)giant donor stars
- Can maintain X-Ray luminosities above 10^{36} erg s$^{-1}$, even for orbital periods larger than 10,000 days
 - However, these systems are not observed
 - Even small natal kicks (to direct collapse black holes) can disrupt these systems
 - More closely bound systems can still survive
Roche-Lobe Overflow HMXBs

- Complex Evolutionary Mechanism:
 - Binary system begins in relatively tight orbit
 - Common Envelope of primary star draws systems closer together
 - Systems survive natal kick
 - Roche Lobe overflow of the secondary system onto the primary compact object
Roche-Lobe Overflow HMXBs

- **Ingredients:**
 - Need a large initial mass ratio between the primary and secondary

Calculated by Single Star Evolution (SSE) code Hurley et al. (2000)
Roche-Lobe Overflow HMXBs

- Ingredients:
 - Need a large initial mass ratio between the primary and secondary.
 - Initial orbital separation must be large enough to avoid a common envelope when the primary star evolves through the Hertzsprung Gap (Taam & Sandquist 2000).

Capture Zone calculated by Single Star Evolution (SSE) code Hurley et al. (2000)
Roche-Lobe Overflow HMXBs

- **Ingredients:**
 - Need a large initial mass ratio between the primary and secondary.
 - Initial orbital separation must be large enough to avoid a common envelope when the primary star evolves through the Hertzsprung Gap (Taam & Sandquist 2000).
 - Initial orbital separation must be small enough to produce a common envelope during the supergiant stage of the primary star.

Graph showing the relationship between maximum radius and metallicity, calculated by Single Star Evolution (SSE) code Hurley et al. (2000).
Roche-Lobe Overflow HMXBs

- To Survive the CE, the potential energy in the binary orbit must exceed the envelope binding energy (Webbink 1984)

- **Note**: Strong metallicity dependence in the parameter space for survivable CEs.

- Produces a population of HMXBs which is strongly metallicity dependent

![Capture Zone](calculated by Single Star Evolution (SSE) code Hurley et al. (2000))
Effect of Natal Kicks on RLO-HMXBs

- Interestingly, this is not enough:
 - At the termination of the CE, the systems must not be in Roche-Lobe Overflow
 - However, the binary must re-enter Roche-Lobe Overflow.

- Two possibilities:
 - Evolution of donor star (expanding radius)
 - Supernova Natal Kicks!

*Linden et al. (2010)
*also observed in LMXBs (Kalogera & Webbink 1998)
Apply these Models to Three Current Problems

• The Population of Ultra-luminous X-Ray Sources (ULX)

• The population of HMXBs with a B[e] type donor (Be-HMXBs)

• The paucity of HMXBs with a Wolf-Rayet donor
ULX as a Function of Metallicity

Mapelli et al. (2010)

- Observations indicate that ULX formation rate increases with decreasing metallicity.
- Previous Theory: Low metallicity means heavier black holes and brighter HMXBs.

Belczynski et al. (2004)
Ultra-Luminous X-Ray Sources

- The majority of ULX are powered by Roche Lobe Overflow
- Binary evolution provides you with a mechanism to explain the observed overabundance of ULX in low-metallicity environments

Linden et al. (2010)

Prestwich et al. (2013)
These Models are Testable!

- In the **single star evolution** mechanism there is a clear **negative correlation** between the metallicity and the compact object mass.

- In the **binary evolution mechanism**, there is a **positive correlation** between the metallicity and the black hole mass.
A Neutron Star ULX in M82 !?

• Observation of an ULX with a neutron star compact object

• Obviously, is not formed due to single star evolution properties

• A strong indication that binary evolution plays a critical role in ULX formation

Bachetti et al. (2014)
Be-HMXBs

- At lower luminosities, Be-HMXBs form a substantial fraction of the total HMXB number
- Be-HMXBs require a negligible natal kick in the primary NS
- Electron Capture Supernovae provide a natural explanation
 - **Age** (form in stars with ZAMS mass 8-12 M$_\odot$, lifetime ~ 30 Myr)
 - **Natal Kick Velocities**
 - **Spin-up** (stable, long term mass transfer prior to SN pushes angular momentum onto the donor)
- This forms a powerful probe of neutron star formation at relatively low masses (8-12 M$_\odot$)

TL, Sepinsky, Kalogera, Belczynski (2009)
• A primary theoretical question is the lack of observed HMXBs with a Wolf-Rayet donor

• These systems should be extremely bright, and detectable.

• They should be the formed as a final evolution state of the observed B[e]-HMXB population

• This constrains modeling uncertainties to the CE phase between the B[e]-HXMB and WR-HMXB periods

• Find that this constraints the common envelope efficiency to be smaller than 1 ($\alpha_{CE} < 0.88$)
Conclusions

• Multiple evolutionary pathways can produce a bright HMXB — different pathways lead to different characteristics of the system

• Metallicity plays an important role in determining the HMXB population

 • Not in determining the parameters of a system moving through an evolutionary pathway

 • Primarily in determining the efficiency of each evolutionary pathway