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Big Questions '

¢ What do Chandra HETGS observations of
- GRS 1915+105 tell us about accretlon onto
compact objects?

‘¢ What are the hnks between accré’tion |
ejection, and radlatlon processes in X-ray
.binaries?

* Why and how are outﬂows espe(:lally disk
winds, important?
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Why GRS 1915+1_o5? |
® GRS 1915+105 exhibits strong.speciral

variability: rapidly-changing accretion,
ejection, and radiation processes

Density (mJdy)

Flux

d

* Time scales: seconds to decades!
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Goal | ‘ o . ’ lTTlmthour) . ‘

® Understand the accretion processes dr1v1ng this Varlablhty
~ How do these processes drive outflows, link the black hole
and its surroundings?

< | Need insights into atomic physms Chandra HETGS!
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Chandra Observations '

Goal: Study the dlSk—Jet connectlon at hlgh
spectral resolution with the Chandra High'
_ Energy Transmission Gratings (HETGS)

11 public HETGS
observations over 10
years

Use spectral lines to . -

study the long-term

influence of accretion
- processes on the black

hole’s environment
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Simultaneous RXTE

Measure .LX (3-18 keV) v

PLF = (8.6-18) /(3-18)

PLF = Power Law |
Fraction: broadband
spectrum, physical

pProcesses
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Spectral Lines
and Hard Flux

Iron line spectra on right

Sometimes broad emission lines, narrow
absorption lines

Interpretation:

Iron Emission line: accretion disk
1lluminated by base of the radio jet:

Iron Absorption lines: Fe XXVI, hot (1(56 K)
‘accretion disk wind (1000 km/s blueshift)

As power law fraction decreases |
(downwards), we start to see absorption
lines instead of emission! '

® Links between winds, jets, and broadband

spectrum (Comptonization, photoionization ) i 16 18
. . Neilsen & Lee 2009 wavelength (&)




‘Spectral Lines
~and Hard Flux

Iron line spectra on right

Sometimes broad emission lines, narrow
absorption lines -

Interpretation:

Iron Em.ission' line: accretion disk
illuminated by base of the radio jet:

Iron Absorption lines: Fe XXVI, hot (1(')6 K)
-accretion disk wind (1000 km/s blueshitt)

As power law fraction decreases |
(downwards), we start to see absorption
lines instead of emission! -

® Links between winds, jets, and broadband

spectrum (Comptonization, photoionization ) i 16 18
. ‘ ? . . Neilsen & Lee 2009 wavelength (A)




Wind-J et Interactlon

O Accretion disk wind

e Compact radio jet

Neilsen & Lee 2009

Power Law Fraction

Absorption Line Equivalent Width
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- Wind-J et Interactlon

Jets linked to hard flux

Disk wind measured in"

absorption

Power Law Fraction

O Accretion disk wind

e Compact radio jet

Neilsen & Lee 2009

Absorption Line Equivalent Width
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- Wind-J et Interactlon

Jets linked to hard flux
O Accretion disk wind

Disk wind measured in*
absorption

e Compact radio jet

Neilsen & Lee 2009

Jet
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- Wind-J et Interactlon

Jets linked to hard flux

Disk wind measured in"*

absorption

Find anticorrelation
between wind and jet
strengths

Jet

O Accretion disk wind

e Compact radio jet

Neilsen & Lee 2009
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- Wind-J et Interactlon

Jets linked to hard flux
Dickvind measired il O Accretion disk wind
absorption | e Compact radio jet
Find anticorrelation | Neilsen & Lee 2009
between wind and jet -+

<P
strengths —_

On avg, the wind and the
jet carry the same mass
away from the black hole
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- Wind-J et Interactlon

Jets linked to hard flux

O Accretion disk wind

Disk wind measured in"*
absorption | g e Compact radio jet

Find anticorrelation el ol Neilsen & Lee 2009
between wind and jet
strengths

Jet

On an, the wind and the
jet carry the same mass
away from the black hole

Pivot point: both wind
and jet are present, but
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- Wind-J et Interactlon

Jets linked to hard flux

Disk wind measured in*
absorption

Find anticorrelation
between wind and jet
strengths

On an, the wind and the
jet carry the same mass
away from the black hole

Pivot point: both wind
and jet are present, but
weak

Implications:

Jet

O Accretion disk wind

e Compact radio jet

Neilsen & Lee 2009
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- Wind-J et Interactlon

® Jets linked to hard flux
0 Diskiind measired 18 ‘ O Accretion disk wind
* absorption S e e Compact radio jet
®  Find anticorrelation g o Neilsen & Lee 2009
between wind and jet -+ - Y
<P
strengths —_

€

On an, the wind and the
jet carry the same mass
away from the black hole

®  Pivot point: both wind
and jet are present, but
weak

Impllcatlons. - | Wind

® Disk wind and radio jet directly competing for their matter
supply—wind gets stronger at the expense of the jet
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- Wind-J et Interactlon

®  Jets linked to hard flux
0 Diskiind measired 18 ‘ O Accretion disk wind
*  absorption S e e Compact radio jet
®  Find anticorrelation gt - Neilsen & Lee 2009
between wind and jet -+ - %
<P
strengths —_

€

On an, the wind and the
jet carry the same mass
away from the black hole

®  Pivot point: both wind
and jet are present, but
weak

Impllcatlons. - | Wind

® Disk wind and radlo jet directly competing for their matter
supply—wmd gets stronger at the expense of the jet

3 Interaction between wind and jet r medlated by hard X rays,
contlnuumprocesses (Lee 02, M111er0,”o6,”()8)” i
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- Wind-Jet Interaction

® Qutflow

- regulation
. around this
stellar-mass
BH over long
timescales .

Fs (1011 tdyn)

Broad
Emission
Line

Credit: NASA/CXC/A. Hobart
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® Relation to supermassive N
blaCk hOleS? , : f /L’-_\ltr)féosrptlon

0.6

0.4 | | |
. 1.6 1.8 2
Neilsen & Lee 2009  Wavelength (A)




- Wind-Jet Interaction

& Qutilow
- regulation
. around this
stellar-mass
BH over long
timescales .

. (10" tayn)

Broad
Emission
Line

Credit: NASA/CXC/A. Hobart

Data/Model

® Relation to supermassive Jiw
blaCk hOleS? : : » { ﬁ?\sﬁgphon

1.8

1.6
Neilsen & Lee 2009  Wavelength (A)
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Recap

Used Chandra HETGS to explore the 1ong -term physmal hnks
between disk, wind, and jet in GRS 1915 °

By studying the average properties of outflows with 10 years of data:

® Winds are a dynamically-important part of the accretion

flow: can suppress jets by. draining their matter supply'

€

Surprise: winds and jets know about each other even though
separated by 105 Rg ~ 10° km =10 lt-s!! .
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Recap

€

Used Chandra HETGS to explore the long term physmal hnks
between disk, wind, and jet in GRS 1915 °

€

By studying the average properties of outflows with 10 years of data:

e "Wi_nds are a dynamically-important part of the accretion
flow: can suppress jets by. draining their matter supply'

»

Surprise: winds and jets know about each other even though
separated by 105 Rg ~ 10° km = 10 lt-s!! .

®. What about the details?
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Recap

€ )

Used Chandra HETGS to explore the long term physmal hnks
between disk, wind, and jet in GRS 1915 °

€ )

By studying the average properties of outflows with 10 years of data:

e "Wi_nds are a dynamically-important part of the accretion
flow: can suppress jets by. draining their matter supply'

»

Surprise: winds and jets know about each other even though
separated by 105 Rg ~ 10° km =10 lt-s!! .

®. Whet about the details?

® Recall: want to understand aceretion and ejection at all scales
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Recap

€ )

Used Chandra HETGS to explore the long term physmal hnks
between disk, wind, and jet in GRS 1915 °

€ )

By studying the average properties of outflows with 10 years of data:

e "Wi_nds are a dynamically-important part of the accretion
flow: can suppress jets by. draining their matter supply'

»

Surprise: winds and jets know about each other even though
separated by 105 Rg ~ 10° km =10 lt-s!! .

® . What about the details?
® Recall: want to understand aceretion and ejection at all scales
® On what time scales can winds and jets respond to continuum,

interact?
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Recap

»

Used Chandra HETGS to explore the 1ong -term physmal hnks
between disk, wind, and jet in GRS 1915 °

»

By studying the average properties of outflows with 10 years of data:

e "Wi_nds are a dynamically-important part of the accretion
flow: can suppress jets by. draining their matter supply'

€

Surprise: winds and jets know about each other even though
separated by 105 Rg ~ 10° km =10 lt-s!! -

® . What about the details?
® Recall; want to understand accretion and ejection at all scales

® On what time scales can winds and jets respond to continuum,
interact?

® Need to track accretion, ejection processes on short time scales
' OPTICAL & INFRARED



30 ks Chandra/RXTE

- What accretion, ejection

The ‘Heartbeat’ State

® Strong 50-second X-ray oscillation
® . Where does it come from? How - .

does it affect the BH environment'?
®  Ideal opportumty to hnk changes

in disk, wind

Credit: NASA/CXC/A. Hobart

LR
—
(-
"
—
-~
{}.:’.
-
o

obs (1 of the 11)

o . _ \ .‘\”‘N " “-; M‘ﬁ ”‘N\ r||',"1\ $l,|
processes are dominant at [ | TAR

each part of the -.

\ l

. p Time (\)
heartbeat 2 3 , Neilsen, Remillard & Lee 2011



The ‘Heartbeat’ State

® Strong 50-second X-ray oscillation

® . Where does it come from? How -
does it affect the BH environment'?

®  Ideal opportumty to hnk changes
in disk, wind

Credit: NASA/CXC/A. Hobart
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® Study disk and wind
variability as a function of
CYCLE PHASE '

Time (s)

Neilsen, Remillard & Lee 2011




The ‘Heartbeat’ State

® Strong 50-second X-ray oscillation

® . Where does it come from? How -
does it affect the BH environment'?

®  Ideal opportumty to hnk changes
in disk, wind

Credit: NASA/CXC/A. Hobart
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®  Study disk and wind
variability as a function of
CYCLE PHASE o

® * Stack all the individual
cycles (623) together

500
Time (s)

Neilsen, Remillard & Lee 2011




- The Heartbeat State

Strong 50 -second X- -ray oscillation

@

®»

. Where does it come from? How - |
does it affect the BH environment'?

»

Ideal opportumty to hnk changes
in disk, wind

Credit: NASA/CXC/A. Hobart

® Study disk and wind
variability as a function of
CYCLE PHASE '

e - Stack all the individual
cycles (623) together

‘® Enough S/N to track To w0 mm o ww o o

Time (s)

SpeCtral Changes in detail Neilsen, Remillard & Lee 2011




- The ‘Heartbeat’™ State

C Strong 50 -second X-ray oscillation
® . Where does it come from? How - .

does it affect the BH environment'?
®  Ideal oppor1tun1ty to hnk changes

in disk, wind

Credit: NASA/CXC/A. Hobart

.................

Study disk and wind 215 |

variability as a function of - [EEENIESS ”,.1\,,\1;” -------- S
CYCLE PHASE - S
- Stack all the individual

cycles (623) together ™ | 1 e T
| Enough S/N to track R

SpeCtral Changes 1N detall Neilsen, Remlllard&Lee 2011 Phase



- Accretion Disk Wind




- Accretion Disk Wind

Energy (keV)
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- Accretion Disk Wind

Energy (keV)
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- Accretion Disk Wind _

Energy (keV)

® Study wind at each phase of the
cycle, compare to lightcurye

® Complemented by simultaneous
- RXTE broadband spectroscopy
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 Accretion Disk Wind
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® Study wind at each phase of the
cycle, compare to lightcurye
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® Complemented by simultaneous
RXTE broadband spectroscopy
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Cycle Phase ¢




 Accretion Disk Wind
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cycle, compare to lightcurye
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Disk Wind Highlights

Neilsen, Remillard & Lee 2011 Time (s)
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'Disk Wind Highlights

@ nghly Ionized ’ Neilsen, Remillard & Lee 2011 Time (s)

, - : 50
'® 1000 km/s blueshift (same as

. Fe XXVI Ly
we found in 10 yrs of data)
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'Disk Wind Highlights

@ nghly I()nized ’ Neilsen, Remillard & Lee 2011 Time (s)
. . 0 : ; 5()
'® 1000 km/s blueshift (same as

: Mo L Fe XX VI Lyo
we found in 10 yrs of data)

YN Fe XXV Heo. |

® Changes in t<5 seconds!!
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‘Disk Wind Highlights

& nghly Tonized . Neilsen, Remillard & Lee 2011 Time (s)
, - | ‘ 50

1000 km/s blueshift (same as

we found in 10 yrs of data)

™

I | Fe XXVI Lyo
fl L Fe XXV Heo

Absorbed Fl'u.\'

® Changes in t<5 seconds!!

® Unprecedented fast wind
variability, on time scales
shorter than dynamical,
viscous, and sound crossing
times |
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'Disk Wind Highlights

nghly Tonized , Neilsen, Remillard & Lee 2011 Time (s)
; . : * 50

1000 km/s blueshift (same as | I

we found in 10 yrs of data) f A

Absorbed Fl'u.\'

Changes in t<5 seconds!!

Unprecedented fast wind
variability, on time scales
shorter than dynamical,
viscous, and sound crossing
times - |
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; e . Cycle Phase ¢
Tonization changes too, but

luminosity variations can’t

explain additional ionization

-
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'Disk Wind Highlights

nghly Tonized , Neilsen, Remillard & Lee 2011 Time (s)
; . : * 50

1000 km/s blueshift (same as | I

we found in 10 yrs of data) f A

Absorbed Fl'u.\'

Changes in t<5 seconds!!

Unprecedented fast wind
variability, on time scales
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times - |
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> o . Cycle Phase ¢
Ionization changes too, but

luminosity variations can’t

explain additional ionization

Wind structure must change

on the same time scales!!

-

OPTICAL & INFRARED



Disk Wind Highlights

nghly Tonized . Neilsen, Remillard & Lee 2011 Time (s)
* . 50

1000 km/s blueshift (same.as

. . Fe XXVI Lyo
we found in 10 yrs of data)
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Absorbed Fl.u.\'

Changes in t<5 seconds!!

Unprecedented fast wind
variability, on time scales
shorter than dynamical,
viscous, and sound crossing
times - |
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> o . Cycle Phase ¢
Ionization changes too, but

luminosity variations can’t

explain additional ionization ® For this type of wind, we
Wind structure must change  ©  estimate Mdotwind = 25 Mdotsn

on the same time scales!!
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Influence of a Masswe

Wind

Shields et al. (1986) studled theoretlcal
“ 1mphcat10ns of very massive winds

These winds drive an instability that can drain
- mass from the disk on long tlmescales

For GRS 1915

105, the characteristic

tlmescale could be as short-as 2 weeks

Shlelds 1nstab111ty could be respon51ble not
only for turning oft jets, but also for causing
state transitions
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Recap

® QOur study of the global
properties of the wind and the -
jet in GRS 1915+105 showed that
disk winds may be able suppress | |
jets on long time scales .l

® By studying the details of the
- wind variability on time scales of
seconds, we discovered how the
‘wind influences the accretion
- flow (and vice-versa) s

: OPTICAL & INFRARED



Rec'ap' '

® Qur study of the global
propertles of the wind ‘and the .
jet in GRS 1915+105 showed that §
disk winds may be able suppress
jets on long time scales T Crdi NASA/CXC/ . Hobar

® By studying the details of the
- wind variability on time scales of
seconds, we discovered how the
‘wind influences the accretion
- flow (and vice-versa)
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‘ Other Variability
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Other Variability
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' Other Variability
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Conclusion
® Can do really amazing physics W1th spectral Varlablhty at hlgh

resolutlon with the Chandra HETGS:

® Atomlc Physms, Doppler shifts: What are we seeing, where is it,
where is it going, and why? |

® Photoionization: Origin, evolutlon and 1nﬂuence of winds (from
disks or stars)

‘® Variability: Accretion instabilities and disk dynamies
® Oséillati(ans Quasi-regular cycles Irregular variability .

& Lmks betiveen radlatlon, accretion processes, and
oulﬂows
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- The Heartbeat State
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- The Heartbeat State .
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Phase

® Smooth changes in the disk, corona, X-rays
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The Heartbeat State .
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® Smooth changes in the disk, corona, X-rays

© Sudden, catastrophic variability C Rl



The Heartbeat State .
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® Smooth changes in the disk, corona, X-rays

© Sudden, catastrophic variability C Rl



‘Why GRS 1915+1057
* GRS 1915+105 exhibits strong spectral Variability

rapidly-changing accretion, eJectlon and radiation
processes

e Time scales: seconds to decades!
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Why GRS 1915+105‘P

B0 _ .
~ Spt09 1997 A 2-60 keV - |
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UT Time (hours)

K ‘Multiwavelength studies clearly indicatea
relationship between the jet (radio/infrared) and
the accretion disk (X-ray) (Mirabel et al. 1998)

- ® 14 classes of variability represent “limit cycles” of
accretion and ejection et
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Why GRS 1915+105‘P
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Disk Wind Varlablhty

® Highly ionized ABSORPTION: only Fe XXV, Fe XXVI

Extremely variable

Modulated like light-
curve

Wind changes in t<5
seconds!!

Unprecedented fast
wind variability, on

" timescales shorter

than dynamical,
viscous, and sound

_crossing times

Absorbed Flux
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® Blueshifted by ~1000 km/s (same as we fou_nd in'10 yrs of data) -

Time (s)
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Cycle Phase ¢




Disk Wind Varlablhty

® Highly 1onized ABSORPTION: only Fe XXV, Fe XXVI

® Blueshifted by ~1000 km/s (same as we found In'10 yrs of data) -

Time (s)

® Extremely variable

® Modulated like light-
curve

1
() (H~\1\Dl\~\ r' Fe XXVI Ly
L\ Fe XXV Heo | ||f
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l )*i | 4
| \l,
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3
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® Wind changes in ts5

Absorbed Flux

0

seconds!!

—
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® Unprecedented fast (®) RXTE

wind variability, on
timescales shorter

than dynamical,

viscous, and sound 1
crossing times * Cyele Phase
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Variable Photoionization ‘

.® Wind is pfogress:ively over-ionized-throughout the cycle

Time (s)

»

Luminosity doesn’t
increase enough to
explain the additional
1onization

Absorbed Flux

‘»

Wind structure must
change in <1 minute!

‘»

Natural explanation:
every cycle, the X-ray
~ burst launches a new

mini-wind! * S
' . : Cycle Phase ¢
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® For this type of wind, we estimate Mdotwina < 25 Mdoten
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Outflows and Definitions

oo 3 4 07 a5
- log(r/ry) L i



8 [T YT Ty '
> .Sept 09, 1997 A 260 keV

Future Directions: Multi-
Outflow Variability Studies

1 -0.8 -0.6 -0.4 -0.2
Flux6=10/Flux3-6 keV

: Ponti et al 2011

Mirabel et al 98 Casella et a 2010

® New radio, IR capablhtles are beginning to
allow jet monitoring on <1s tlmescales |

“® Simultaneous monitoring of all major
accretlon/ ejection processes every second!

OPTICAL & INFRARED



Does This Actually Work?

| i=66°
| eaaeoiosadia Ll I
D
| —
o0
=t
P * S

Proga et al 2011

OOt W Ox103 . 2x1074 0.2

| ~ log(r/r¢)
* Hydrodynamic simulations with strong

luminosity Varlatlons based on heartbeat state

: OPTICAL & INFRARED



Does This Actually Work?

Proga et al 2011

OOt W Ox103 . 2x1074 0.2
| ~ log(r/rc) '

® Hydrodynamlc simulations with strong
luminosity Varlatlons based on heartbeat state

: OPTICAL & INFRARED



Variable Photoionization

.® Wind is pfogress;ively over-ionized-throughout the cycle

Time (s)
® Luminosity doesn’t
increase enough to R P e
X S % [ 1§11 Fe XXVI Lyu I‘H :
explain the additional = VA Fe XXV Heor |
lonization 3 ‘
® Wind structure must <
change in <1 minute!
® Natural explanation:

every cycle, the X-ray
~ burst launches a new
mini-wind!
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Cycle Phase ¢
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Power Law Fraction

»

®»

11 Observations

e Faint/hard state
O Bright/soft state

| logio Lx (1038 ergs/s)
Power law fraction vs X-ray luminosity

Interestingly, spectral lines vary with powe'r law

~ fraction
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‘Tracking the Accretion Flow

. Model 1

e Model 2

“

Bolometric Disk L (10% eres/s)

‘s Loop: Accretion rate not constant (Lightman & Eardley 1974)
¢ Rising luminosity at constant temperature

e Signature of a local Edding’ton limit (Lin 2009)
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‘Tracking the Accretion Flow

. Model 1

e Model 2

15/S)

{
O

Bolometric Disk L. (10 er

‘s Loop: Accretion rate not constant (Lightman & Eardley 1974)
¢ Rising luminosity at constant temperature

e Signature of a local Edding’ton limit (Lin 2009)
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‘Tracking the Accretion Flow

. Model 1

e Model 2

1S/S)

{
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Bolometric Disk L. (10 er

‘s Loop: Accretion rate not constant (Lightman & Eardley 1974)
¢ Rising luminosity at constant temperature

e Signature of a local Eddingfon limit (Lin 2009)
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‘Tracking the Accretion Flow

. Model 1

e Model 2
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Bolometric Disk L (10% eres/s)

‘s Loop: Accretion rate not constant (Lightman & Eardley 1974)
¢ Rising luminosity at constant temperature

e Signature of a local Edding’ton limit (Lin 2009)
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‘Tracking the Accretion Flow

. Model 1

e Model 2

“

Bolometric Disk L (10% eres/s)

‘s Loop: Accretion rate not constant (Lightman & Eardley 1974)
¢ Rising luminosity at constant temperature

e Signature of a local Edding’ton limit (Lin 2009)
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Local Eddington Limit?.

® Tocal Eddington effects arise because
~radiation pressure, gravity have
dlfferent radial dependence

e Allows radiation pressure to disrupta
thin disk inside a critical radius (F ukue -
2004, Lin 2009)

: OPTICAL & INFRARED



Local Eddington Limit?

QAINIIYST]
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Phase
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Local Eddington Limit?
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Local Eddington Limit?
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Local Eddington Limit?

.. (keV)
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Effects of Global Eddington Limit?



Effects of Global Eddington Limit?
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Effects of Global Eddington Limit?
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Effects of Global Eddington Limit?
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Effects of Global Eddington Limit?
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Effects of Global Eddington Limit?

(wy) "y ¥s1q

: OQ
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‘ o
;23
| @

Phase

e - Just after L~Lgaq, sudden changes in the corona: temperature drops,
becomes Compton thick

¢ Sudden appearance of new electrons = plasma ejection?
‘ ' OPTICAL & INFRARED



Heartbeats: _
Radiation vs Gravity

® Radiation pressure
pushes the inner
edge of the disk
-away from the
black hole

Credit: NASA/CXC/M. Weiss

¢ Eventually overwhelmed
by the waves of matter
fallingin -
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Heartbeats:
Radiation vs Gravity

® Radiation pressure
pushes the inner
edge of the disk
-away from the
black hole

Credit: NASA/CXC/M. Weiss

¢ FEventually overwhelmed
by the waves of matter
fallingin -
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~ Estimating the Wind
- Mass-Loss Rate

.
» »
— _
P .
» . . _
‘ »

*. Mass loss rate in the wind 'ispro_portional to:
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Estlmatlng the "'Omd
Mass Loss Rate
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Estlmatlng the .'md
- Mass- Loss Rate
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Chandra HETGS Disk
- Wind

€273 individual oscillations, ' and stacked



Chandra HETGS Disk

f Phase-Folded PCA nghtcurve - : , : ktﬁf““

=0 g Chandra

Count Rate/1000
Photons cm=2 s~! keV-!
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Cycle Phase Energy (keV)

&273 1nd1v1dua1 oscillations, and stacked
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Fun With Atomic Physics

fiL™ Fe XXVI Lya
1 Fe XXV Hea
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N (b) RXTE
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18 20 22
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log Nl"c XXVI (em™™) Kotani et al 2000

Line Fluxes, Eq. Widths Curve of Growth

v

Fe XXVI Ka EW (eV)

count Kate/

B %
‘ nz-/ _-':f_lcr,j(:f)Lgdlf:(:\:,5_,_112@12,:4_1
X1

[onization Balance

Use data, atomic physics -> solve for density, ionization!



dence for Disk Precession
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- The Heartbeat State
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- The Heartbeat State

Lo =K}
» 0Q
$ =
, e
£ o
s =
&
..u \ CD

Phase

OPTICAL & INFRARED



- The Heartbeat State .
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® Smooth changes in the disk, corona, X-rays
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The Heartbeat State .
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® Smooth changes in the disk, corona, X-rays

© Sudden, catastrophic variability C Rl



