GRS 1915+105: An X-ray Spectroscopic Study of Outflows

Joey Neilsen Collaborators: Julia C. Lee, Ron Remillard 12 Years of Science with *Chandra* May 24, 2011

Big Questions

- What do *Chandra* HETGS observations of GRS 1915+105 tell us about accretion onto compact objects?
- What are the links between accretion, ejection, and radiation processes in X-ray binaries?
- Why and how are outflows, especially disk winds, important?

Why GRS 1915+105?

- GRS 1915+105 exhibits strong *spectral* variability: rapidly-changing accretion, ejection, and radiation processes
 - Time scales: seconds to decades!

<u>Goal</u>:

- Understand the accretion processes driving this variability. How do these processes drive outflows, link the black hole and its surroundings?
- Need insights into atomic physics: Chandra HETGS!

Chandra Observations

Goal: Study the disk-jet connection at high spectral resolution with the *Chandra* High Energy Transmission Gratings (HETGS)

- 11 public HETGS
 observations over 10
 years
- Use spectral lines to study the long-term influence of accretion processes on the black hole's environment

- Simultaneous *RXTE*
- Measure L_X (3-18 keV)
- PLF = (8.6-18) / (3-18)
- PLF = Power Law
 Fraction: broadband
 spectrum, physical
 processes

Spectral Lines and Hard Flux

- Iron line spectra on right
- Sometimes broad emission lines, narrow absorption lines
- Interpretation:
- Iron Emission line: accretion disk illuminated by base of the radio jet
- Iron Absorption lines: Fe XXVI, hot (10⁶ K) accretion disk wind (1000 km/s blueshift)
- As power law fraction decreases (downwards), we start to see absorption lines instead of emission!
- Links between winds, jets, and broadband spectrum (Comptonization, photoionization)

Spectral Lines and Hard Flux

- Iron line spectra on right
- Sometimes broad emission lines, narrow absorption lines
- Interpretation:
- Iron Emission line: accretion disk illuminated by base of the radio jet
- Iron Absorption lines: Fe XXVI, hot (10⁶ K) accretion disk wind (1000 km/s blueshift)
- As power law fraction decreases (downwards), we start to see absorption lines instead of emission!
- Links between winds, jets, and broadband spectrum (Comptonization, photoionization)

Absorption Line Equivalent Width

Jets linked to hard flux

Disk wind measured in absorption

Absorption Line Equivalent Width

- Jets linked to hard flux
- Disk wind measured in absorption

- Jets linked to hard flux
- Disk wind measured in absorption
- Find anticorrelation between wind and jet strengths

- Jets linked to hard flux
- Disk wind measured in absorption
- Find anticorrelation between wind and jet strengths
- On avg, the wind and the jet carry the same mass away from the black hole

- Jets linked to hard flux
- Disk wind measured in absorption
- Find anticorrelation between wind and jet strengths
- On avg, the wind and the jet carry the same mass away from the black hole
- Pivot point: both wind and jet are present, but weak

- Jets linked to hard flux
- Disk wind measured in absorption
- Find anticorrelation between wind and jet strengths
- On avg, the wind and the jet carry the same mass away from the black hole
- Pivot point: both wind and jet are present, but weak
- **Implications:**

- Jets linked to hard flux
- Disk wind measured in absorption
- Find anticorrelation between wind and jet strengths
- On avg, the wind and the jet carry the same mass away from the black hole
- Pivot point: both wind and jet are present, but weak

Implications:

Wind

Disk wind and radio jet directly competing for their matter supply—wind gets stronger at the expense of the jet

- Jets linked to hard flux
- Disk wind measured in absorption
- Find anticorrelation between wind and jet strengths
- On avg, the wind and the jet carry the same mass away from the black hole
- Pivot point: both wind and jet are present, but weak

Implications:

- Disk wind and radio jet directly competing for their matter supply—wind gets stronger at the expense of the jet
 - Interaction between wind and jet mediated by hard X-rays, continuum processes (Lee 02, Miller 04, 06, 08)

Outflow regulation around this stellar-mass BH over long timescales $(10^{11} t_{dyn})$

Credit: NASA/CXC/A. Hobart

Relation to supermassive black holes?

Outflow regulation around this stellar-mass BH over long timescales (10¹¹ t_{dyn})

Credit: NASA/CXC/A. Hobart

Relation to supermassive black holes?

- Used *Chandra* HETGS to explore the long-term physical links between disk, wind, and jet in GRS 1915
- By studying the average properties of outflows with 10 years of data:
 - Winds are a *dynamically-important* part of the accretion flow: can suppress jets by draining their matter supply!
 - Surprise: winds and jets know about each other even though separated by 10⁵ Rg ~ 10⁶ km = 10 lt-s!!

- Used *Chandra* HETGS to explore the long-term physical links between disk, wind, and jet in GRS 1915
- By studying the average properties of outflows with 10 years of data:
 - Winds are a *dynamically-important* part of the accretion flow: can suppress jets by draining their matter supply!
 - Surprise: winds and jets know about each other even though separated by 10⁵ Rg ~ 10⁶ km = 10 lt-s!!
 - What about the details?

- Used *Chandra* HETGS to explore the long-term physical links between disk, wind, and jet in GRS 1915
- By studying the average properties of outflows with 10 years of data:
 - Winds are a *dynamically-important* part of the accretion flow: can suppress jets by draining their matter supply!
 - Surprise: winds and jets know about each other even though separated by 10⁵ Rg ~ 10⁶ km = 10 lt-s!!
 - What about the details?
 - Recall: want to understand accretion and ejection at all scales

- Used *Chandra* HETGS to explore the long-term physical links between disk, wind, and jet in GRS 1915
- By studying the average properties of outflows with 10 years of data:
 - Winds are a *dynamically-important* part of the accretion flow: can suppress jets by draining their matter supply!
 - Surprise: winds and jets know about each other even though separated by 10⁵ Rg ~ 10⁶ km = 10 lt-s!!

What about the details?

- Recall: want to understand accretion and ejection at all scales
- On what time scales can winds and jets respond to continuum, interact?

- Used *Chandra* HETGS to explore the long-term physical links between disk, wind, and jet in GRS 1915
- By studying the average properties of outflows with 10 years of data:
 - Winds are a *dynamically-important* part of the accretion flow: can suppress jets by draining their matter supply!
 - Surprise: winds and jets know about each other even though separated by 10⁵ Rg ~ 10⁶ km = 10 lt-s!!

What about the details?

- Recall: want to understand accretion and ejection at all scales
- On what time scales can winds and jets respond to continuum, interact?
- Need to track accretion, ejection processes on short time scales

30 ks Chandra/RXTE obs (1 of the 11)

What accretion, ejection processes are dominant at each part of the heartbeat?

- Strong 50-second X-ray oscillation
- Where does it come from? How does it affect the BH environment?
- Ideal opportunity to link changes in disk, wind

Study disk and wind variability as a function of CYCLE PHASE Strong 50-second X-ray oscillation

- Where does it come from? How does it affect the BH environment?
- Ideal opportunity to link changes in disk, wind

Credit: NASA/CXC/A. Hobart

Study disk and wind variability as a function of CYCLE PHASE

Stack all the individual cycles (623) together

- Strong 50-second X-ray oscillation
- Where does it come from? How does it affect the BH environment?
- Ideal opportunity to link changes in disk, wind

Credit: NASA/CXC/A. Hobart

Study disk and wind variability as a function of CYCLE PHASE

- Stack all the individual cycles (623) together
- Enough S/N to track spectral changes in detail

- Strong 50-second X-ray oscillation
- Where does it come from? How does it affect the BH environment?
- Ideal opportunity to link changes in disk, wind

Credit: NASA/CXC/A. Hobart

Study disk and wind variability as a function of CYCLE PHASE

- Stack all the individual cycles (623) together
 - Enough S/N to track spectral changes in detail

- Strong 50-second X-ray oscillation
- Where does it come from? How does it affect the BH environment?
- Ideal opportunity to link changes in disk, wind

?

- Study wind at each phase of the cycle, compare to lightcurve
- Complemented by simultaneous RXTE broadband spectroscopy

Disk Wind Highlights

OPTICAL & INFRARED

Disk Wind Highlights

Highly Ionized

1000 km/s blueshift (same as we found in 10 yrs of data)

- 1000 km/s blueshift (same as we found in 10 yrs of data)
- Changes in t≤5 seconds!!

- 1000 km/s blueshift (same as we found in 10 yrs of data)
- Changes in t≤5 seconds!!
- Unprecedented fast wind variability, on time scales shorter than dynamical, viscous, and sound crossing times

- 1000 km/s blueshift (same as we found in 10 yrs of data)
- Changes in t≤5 seconds!!
- Unprecedented fast wind variability, on time scales shorter than dynamical, viscous, and sound crossing times
- Ionization changes too, but luminosity variations can't explain additional ionization

- 1000 km/s blueshift (same as we found in 10 yrs of data)
- Changes in t≤5 seconds!!
- Unprecedented fast wind variability, on time scales shorter than dynamical, viscous, and sound crossing times
- Ionization changes too, but luminosity variations can't explain additional ionization
- Wind structure must change on the same time scales!!

Highly Ionized

- 1000 km/s blueshift (same as we found in 10 yrs of data)
- Changes in t≤5 seconds!!
- Unprecedented fast wind variability, on time scales shorter than dynamical, viscous, and sound crossing times
- Ionization changes too, but luminosity variations can't explain additional ionization
- Wind structure must change on the same time scales!!

Solution Series Ser

Influence of a Massive Wind

- Shields et al. (1986) studied theoretical implications of very massive winds
- These winds drive an instability that can drain mass from the disk on long timescales
- For GRS 1915+105, the characteristic timescale could be as short as 2 weeks
- Shields instability could be responsible not only for turning off jets, but also for causing state transitions

Recap

Our study of the global properties of the wind and the jet in GRS 1915+105 showed that disk winds may be able suppress jets on long time scales

Credit: NASA/CXC/A. Hobart

 By studying the details of the wind variability on time scales of seconds, we discovered *how* the wind influences the accretion flow (and vice-versa)

Credit: D. Proga

Recap

• Our study of the global properties of the wind and the jet in GRS 1915+105 showed that disk winds may be able suppress jets on long time scales

By studying the details of the wind variability on time scales of seconds, we discovered *how* the wind influences the accretion flow (and vice-versa)

Other Variability

OPTICAL & INFRARED

Other Variability

Other Variability

OPTICAL & INFRARED

Conclusion

- Can do really amazing physics with spectral variability at high resolution with the *Chandra* HETGS:
 - Atomic Physics, Doppler shifts: What are we seeing, where is it, where is it going, and why?
 - Photoionization: Origin, evolution, and influence of winds (from disks or stars)
 - Variability: Accretion instabilities and disk dynamics
 - Oscillations, Quasi-regular cycles, Irregular variability
 - Links between radiation, accretion processes, and outflows

Smooth changes in the disk, corona, X-rays

Smooth changes in the disk, corona, X-raysSudden, catastrophic variability

Smooth changes in the disk, corona, X-raysSudden, catastrophic variability

- GRS 1915+105 exhibits strong *spectral* variability: rapidly-changing accretion, ejection, and radiation processes
- Time scales: seconds to decades!

 Multiwavelength studies clearly indicate a relationship between the jet (radio/infrared) and the accretion disk (X-ray) (Mirabel et al. 1998)

 Multiwavelength studies clearly Indicate a relationship between the jet (radio/infrared) and the accretion disk (X-ray) (Mirabel et al. 1998)

 Multiwavelength studies clearly indicate a relationship between the jet (radio/infrared) and the accretion disk (X-ray) (Mirabel et al. 1998)

 Multiwavelength studies clearly indicate a relationship between the jet (radio/infrared) and the accretion disk (X-ray) (Mirabel et al. 1998)

Disk Wind Variability

- Highly ionized ABSORPTION: only Fe XXV, Fe XXVI
- Blueshifted by ~1000 km/s (same as we found in 10 yrs of data)
- Extremely variable
- Modulated like lightcurve
- Wind changes in t≲5 seconds!!
- Unprecedented fast wind variability, on timescales shorter than dynamical, viscous, and sound crossing times

Disk Wind Variability

- Highly ionized ABSORPTION: only Fe XXV, Fe XXVI
- Blueshifted by ~1000 km/s (same as we found in 10 yrs of data)
- Extremely variable
- Modulated like lightcurve
- Seconds!!
 Seconds
- Unprecedented fast wind variability, on timescales shorter than dynamical, viscous, and sound crossing times

Variable Photoionization

Wind is progressively over-ionized throughout the cycle

- Luminosity doesn't increase enough to explain the additional ionization
- Solution Structure Wind Structure must change in ≤1 minute!
- Natural explanation: every cycle, the X-ray burst launches a new mini-wind!

○ For this type of wind, we estimate $Mdot_{wind} \leq 25 Mdot_{BH}$

Outflows and Definitions

Future Directions: Multi-Outflow Variability Studies

Mirabel et al 98

Casella et al 2010

- New radio, IR capabilities are beginning to allow jet monitoring on <1s timescales
- Simultaneous monitoring of all major accretion/ejection processes every second!

Does This Actually Work?

 $\log(\theta)$

S

Proga et al 2011 2×10^{-4} 2×10^{-3} 2×10^{-2} 0.2 $log(r/r_c)$ • Hydrodynamic simulations with strong luminosity variations based on heartbeat state

PTICAL & INFRARED

Does This Actually Work?

 $1 = 66^{\circ}$

2×10⁻⁴
 2×10⁻³
 2×10⁻²
 0.2
 log(r/r_c)
 Hydrodynamic simulations with strong luminosity variations based on heartbeat state

Variable Photoionization

Wind is progressively over-ionized throughout the cycle

- Luminosity doesn't increase enough to explain the additional ionization
- Solution Structure Wind Structure must change in ≤1 minute!
- Natural explanation: every cycle, the X-ray burst launches a new mini-wind!

11 Observations

 $\log_{10} L_X (10^{38} \text{ ergs/s})$

Power law fraction vs X-ray luminosity

Interestingly, spectral lines vary with power law fraction OPTICAL & INFRARED

Loop: Accretion rate not constant (Lightman & Eardley 1974)

- Rising luminosity at constant temperature
- Signature of a *local* Eddington limit (Lin 2009)

Loop: Accretion rate not constant (Lightman & Eardley 1974)

- Rising luminosity at constant temperature
- Signature of a *local* Eddington limit (Lin 2009)

Loop: Accretion rate not constant (Lightman & Eardley 1974)
Rising luminosity at constant temperature

Signature of a *local* Eddington limit (Lin 2009)

- Loop: Accretion rate not constant (Lightman & Eardley 1974)
 Rising luminosity at constant temperature
- Signature of a *local* Eddington limit (Lin 2009)

Loop: Accretion rate not constant (Lightman & Eardley 1974)
 Dising luminosity at constant tomporature

Rising luminosity at constant temperature

Signature of a *local* Eddington limit (Lin 2009)
Local Eddington effects arise because radiation pressure, gravity have different radial dependence

 Allows radiation pressure to disrupt a thin disk inside a critical radius (Fukue 2004; Lin 2009)

OPTICAL & INFRARED

- Just after L~L_{Edd}, sudden changes in the corona: temperature drops, becomes Compton thick
- Sudden appearance of new electrons = plasma ejection?

Heartbeats: Radiation vs Gravity

 Radiation pressure pushes the inner edge of the disk away from the black hole

Credit: NASA/CXC/M. Weiss

Eventually overwhelmed by the waves of matter falling in

Heartbeats: Radiation vs Gravity

 Radiation pressure pushes the inner edge of the disk away from the black hole

Credit: NASA/CXC/M. Weiss

Eventually overwhelmed by the waves of matter falling in

• Mass loss rate in the wind is proportional to:

Mass loss rate in the wind is proportional to:
Wind speed

- Mass loss rate in the wind is proportional to:
- Wind speed
- Column density

Rwind

- Mass loss rate in the wind is proportional to:
- Wind speed

 N_{H}

- Column density
- Radial extend of the wind

Chandra HETGS: Disk

Phase-Folded PCA Lighter PCA

50 s

Chandra HETGS

Phase-Folded Hardness

273 individual oscillations, PHASE-FOLDED and stacked

Chandra HETGS: Disk

273 individual oscillations, PHASE-FOLDED and stacked

Fun With Atomic Physics

Use data, atomic physics -> solve for density, ionization!

Evidence for Disk Precession

TRANSITION

Evidence for Disk Precession

Smooth changes in the disk, corona, X-rays

Smooth changes in the disk, corona, X-raysSudden, catastrophic variability