Statistics I:
Issues in Model Fitting

in the X-Ray Regime
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Glossary of Important Notation

e [: a dataset

e D;: the datum of bin ¢ of the dataset

e N: the number of bins in the dataset

e B: a background dataset associated with D

e B;: the datum of bin ¢ of the background dataset
o M = M(0): a model with free parameters 6

e 0: the vector of best-fit model parameters

e P: the number of (freely varying) model parameters
e M;: the convolved model amplitude in bin ¢

e /1: the mean of a distribution

e V/: the variance of a distribution

e 0: the standard deviation of a distribution

e /| X|: the expectation of variable X

e L: the likelihood

e L: the log-likelihood log/L

e x*: the “chi-square” statistic



Definitions

e Random variable: a variable which can take on dif-
ferent numerical values, corresponding to different ex-
perimental outcomes.

— Example: a binned datum D;, which can have dif-
ferent values even when an experiment is repeated
exactly.

e Statistic: a function of random variables.

— Example: a datum D;, or a population mean

(v = [=L, Di]/N).

e Probability sampling distribution: the normalized
distribution from which a statistic is sampled. Such a
distribution is commonly denoted p(X|Y'), “the prob-
ability of outcome X given condition(s) Y',” or some-
times just p(X). Note that in the special case of the
Gaussian (or Normal) distribution, p(X ) may be writ-
ten as N (u,0?), where p is the Gaussian mean, and

o2 is its variance.



Properties of Distribution

The beginning X-ray astronomer only needs to be familiar
with four properties of distributions: the mean, mode,
variance, and standard deviation, or “error.”

e Mean: p= E[X] = [dX Xp(X)
o Mode: max|p(X)]
e Variance: V[X] = E[(X —p)?] = [dX (X —u)*p(X)
o Error: ox = V[X]
Note that if the distribution is Gaussian, then ¢ is indeed

the Gaussian ¢ (hence the notation).

If two random variables are to be jointly considered, then
the sampling distribution is two-dimensional, with shape
locally described by the covariance matrix:

( V[Xl] COV[Xl, XQ] )
COV[Xl,XQ] V[XQ]
where

cov[ X1, Xo] = E[(X1— pxy) (X2 — px,)]
= E[XlXQ] — E[Xl]E[X2]

The related correlation coefficient is

X1, X
COI'I'[Xl,XQ] = COV[ b 2].
0X,0X,

The correlation coefficient can range from —1 to 1.
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Figure 1: Top: example of a joint probability sampling distribution for two random variables.

Bottom: the marginal sampling distribution p(z)



The Poisson Distribution

In the remainder of this class, we will concentrate ex-
clusively upon fitting counts spectra, i.e. fitting data
sampled from the Poisson distribution.

The discrete Poisson distribution

D;
M; o~ M;
D!

p(Di|M;) =

gives the probability of finding exactly D; events in bin ¢
of dataset D in a given length of time, if the events occur
independently at a constant rate M;.

Things to remember about the Poisson distribution:
o = F|D;] =M,
o V|D;| = M;;

e cov|D;,, D;,| = 0;

)

e the sum of n Poisson-distributed variables (found by,
e.g. combining the data in n bins) is itself Poisson-
distributed with variance =} ; M;; and

e as M, — oo, the Poisson distribution converges to
a Gaussian distribution N(u = M;, 0% = M;).
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Figure 2: Integer counts spectrum sampled from a constant amplitude model with mean p
= 60 counts, and fit with a parabolic model.



Figure 3: Example of a two-dimensional integer counts spectrum. Top Left: Chandra ACIS-
S data of X-ray cluster MS 2137.3-2353, with SAODS9 source regions superimposed. Top
Right: Best-fit of a two-dimensional beta model to the filtered data. Bottom Left: Residuals

(in units of o) of the best fit. Bottom Right: The applied filter; the data within the ovals
were excluded from the fit.



« 350
<325
»300
2275
» 250

a 225

200

-1?5

2150

RN RN NN A R R AL LS LR R LA
TTTTT | TTT | T | I

2125

075

ll]l|(;v[({

050

2026

T

L l-.[.|.|.r.|.|,|.|.l.[.|.t.l.|.i
0 1.0 2,0 3.0 4,0 5.0 B.0 7.0 g.0 8.0 10.0

Lola Lol [.;_l._]_;_lxl-l;l;].I.L.l._LJIJ.LAIJ_IKI-I-I-I.I.I.ialnl.

000

Figure 4: Comparison of Poisson distributions (dotted) of mean 4 = 2 and 5 with normal
distributions of the same mean and variance (Eadie et al. 1971, p. 50).
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Figure 5: Comparison of Poisson distributions (dotted) of mean p = 10, 25 and 40 with
normal distributions of the same mean and variance (Eadie et al. 1971, p. 50).



Assessing the Quality of Fit

One can use the Poisson distribution to assess the prob-
ability of sampling a datum D; given a predicted (con-
volved) model amplitude M;. Thus to assess the quality
of a fit, it is natural to mazimize the product of Pois-
son probabilities in each data bin, 7.e. to maximize the
Poisson likelthood:

D;

EzHL—HD'

exp(~ M) = Lp(Di|M)

In practice, what is often maximized is the log-likelihood,
L = log L. A well-known statistic in X-ray astronomy
which is related to L is the so-called “Cash statistic”:

N

We’'ll see later why the factor of two is present.



(Non-)Use of the Poisson Likelihood

In model fits, the Poisson likelihood is not as commonly
used as it should be. Some reasons why include:

e a historical aversion to computing factorials;

e the fact the likelihood cannot be used to fit “back-
ground subtracted” spectra;

e the fact that negative amplitudes are not allowed (not
a bad thing—physics abhors negative fluxes!);

e the fact that there is no “goodness of fit” criterion,
i.e. there is no easy way to interpret L., (however,

cf. the CSTAT statistic of XSPEC); and

e the fact that there is an alternative in the Gaussian
limit: the y? statistic.



The y? Statistic

Here, we demonstrate the connection between the Poisson
likelihood and the y? statistic.’

e Step 1: write down the Poisson likelihood (in one bin).

L, = ]gf exp(—M;)
e Step 2: apply Stirling’s approximation.
D;! = +2xD,DPe "
e Step 3: look near, e.g., the log-likelihood peak, and
reparameterize in terms of € = M\i/;)—? L,

M;
L; = logl; =~ ——log(27rD)+Dlog(D)+D M,

7

1
=5 log(2mD;) + D;log(1 + \/E> — v/ D;
1
=5 log(2mD;) +
€ € €3
D, _ —...| = eV/D;
(VDi 2D'+3D-3/2 ) )
1 2 63
5 108(21Di) — o + O \/E)
= L, &~ — -
J2rD; P 2D, ] e ( 2

1The following is based on unpublished notes by Loredo (1993).



Validity of the y? Statistic

Summarizing the results shown on the last panel, if
e D, > 1in every bin ¢, and

e terms of order € and higher in the Taylor series ex-
pansion of L may be ignored,

then the statistic x¥? may be used to estimate the Poisson
likelihood, and an observed value x2,, will be sampled
from the x? distribution for N — P degrees of freedom.

= Regarding the first condition above, the general rule-
of-thumb is that there should be a minimum of five counts
in every bin.

= Regarding the second condition above, it is only an
major issue if the fit is bad.

e However, bad fits are common in X-ray astronomy;
one example is the fit of a continuum model to data
exhibiting an obvious (emission or absorption) line.
Inferences made using such a fit can be suspect!

Note that if either rule breaks down, you can still use the
x? statistic; however, it will no longer be y*-distributed
and you may need to use Monte Carlo simulations to
make statistical inferences. Also, your estimates of best-
fit parameter values may not closely match estimates you
would have made using the Poisson likelihood.
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Figure 6: Examples of the x? distribution for v = N — P = 1, 2, 3, 4, and 5 (Eadie et
al. 1971, p. 64).



Versions of the y? Statistic

The version of y? derived above is dubbed “data vari-
ance” x?, or x3, because of the presence of D in the
denominator. Generally, the x? statistic is written as:

N (D; — M;)*
oo L0

where o? represents the (unknown!) variance of the Pois-
son distribution from which D; is sampled.

x° Statistic o2
Data Variance D;
Model Variance M,;
Gehrels 1+ +/D; +0.75)?
Primini M; from previous best-fit
Churazov based on smoothed data D
“Parent” #
Least Squares 1

Note that some X-ray data analysis routines may estimate
o; for you during data reduction. In PHA files, such
estimates are recorded in the STAT_ERR column.



Statistical Issues: Goodness-of-Fit

e The y? goodness-of-fit is derived by computing

oo = [o d’p(*IN - P)

1 X2 ¥_1 2

. 00 2 [ X X
= o) b ™ (2) ©

This can be computed numerically using, e.g., the

GAMMQ routine of Numerical Recipes.

e A typical criterion for rejecting a model is a2 < 0.05
(the “95% criterion”). However, using this criterion
blindly is not recommended!

e A quick’n’dirty approach to building intuition about
how well your model fits the data is to use the reduced

X%, B-€. Xopsx = Xops/ (N — P):

— A “good” fit has x5, ~ 1.
—1If x2ps, — 0, the fit is “too good” —which means
(1) the errorbars are too large, (2) x?,, is not sam-

pled from the x? distribution, and/or (3) the data
have been fudged.

The reduced y? should never be used in any math-
ematical computation—if you are using it, you are
probably doing something wrong!



Statistical Issues: Background Subtraction

e A typical “dataset” may contain multiple spectra, one
of which contains contributions from the source of in-
terest and the background, and one or more others
which contain background counts alone. (The back-
ground itself may contain contributions from the cos-
mic X-ray background, the particle background, etc.,
but we’ll ignore this complication.)

e The proper way to treat the background is to model
it!
= Simultaneously fit a background model Mp to the

background dataset(s) B;, and a source plus back-
ground model Mg + Mp to the raw dataset D.

= The background model parameters must have the
same values in both fits, ¢.e. do not fit the back-
ground data first, then fit the source plus back-
ground data!

= Maximize L£p X Ls,p or minimize x5 + X35
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Figure 7: Top: Best-fit of a power-law times galactic absorption model to the source spectrum
of supernova remnant G21.5-0.9. Bottom: Best-fit of a separate power-law times galactic
absorption model to the background spectrum extracted for the same source.



Statistical Issues: Background Subtraction

e However, many X-ray astronomers continue to sub-
tract the background data from the raw data:
Y1 Bij
E?:l /BBthj

D; = D;— Bptp

n is the number of background datasets, ¢ is the ob-
servation time, and (3 is the “backscale” (given by the
BACKSCAL header keyword value in a PHA file), typ-
ically defined as the ratio of data extraction area to
total detector area.

e The data D] are not Poisson-distributed: the differ-
ence of two Poisson-distributed variables is not itselt
Poisson-distributed.

e To use x?, the errors must be propagated:

L, Bnofof v 5

VIf(Xy,.., Xn)] = Eljgl 0,LL¢3,LLJ-COV<X“XJ)
m 8]“ 2

R X;|.
i=1 (8;@) ViXi

Substituting X; = p; = D;, Xo = ps = B; 1, ..., and
f = DI, we get:

VD] ~ V[Di]+£j(



Statistical Issues: Bias

e If one samples a large number of datasets from a given
model M(0) and then fits this same model to these
datasets (while letting 6 vary), one will build up sam-
pling distributions for each parameter 6;.

e An estimator (e.g. x*) is biased if the mean of these
distributions (£|0;|) differs from the true values 6.

e The Poisson likelihood is an unbiased estimator.

e The y? statistic can be biased, depending upon the
choice of o:

— Using the Sherpa utility FAKEIT, we simulated 500
datasets from a constant model with amplitude 100
counts.

— We then fit each dataset with a constant model,
recording the inferred amplitude.

Statistic Mean Amplitude

Gehrels 99.05
Data Variance 99.02
Model Variance 100.47
“Parent” 99.94
Primini 99.94

Cash 99.98
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Figure 8: Examples of sampling distributions with different combinations of consistency (not
important for this class) and bias. Arrows show how the distributions change as the number
of simulations is increased (Eadie et al. 1971, p. 117).



Statistical Issues: Rebinning

e Rebinning data invariably leads to a loss of statis-
tical information!

e Rebinning is not necessary if one uses the Poisson
likelihood to make statistical inferences.

e However, the rebinning of data may be necessary to
use x? statistics, if the number of counts in any bin is
s 5. In X-ray astronomy, rebinning (or grouping) of
data may be accomplished with:

— grppha, an FTOOQOLS routine; or
— dmgroup, a CIAO Data Model Library routine.

One common criterion is to sum the data in adjacent
bins until the sum equals five (or more).

e Caveat: always estimate the errors in rebinned spec-
tra using the new data D) in each new bin (since these
data are still Poisson-distributed), rather than prop-
agating the errors in each old bin.

= For example, if three bins with numbers of counts
1, 3, and 1 are grouped to make one bin with 5
counts, one should estimate V[D' = 5| and not
VID'| = V[Dy =1+ V|[Dy = 3] + VD3 = 1].
The propagated errors may overestimate the true
errors.



Statistical Issues: Systematic Errors

e In X-ray astronomy, one usually speaks of two types
of errors: statistical errors, and systematic errors.

e Systematic errors reflect uncertainties in instrumental
calibration. For instance:

— Assume a flat spectrum observed for time ¢ with
a telescope with perfect resolution and an effective
area A;. Furthermore, assume that the uncertainty
in A; is 04,

— Neglecting data sampling, in bin ¢, the expected
number of counts is D; = D, ;(AE)tA;.

— We estimate the uncertainty in D; as
OD; — D%Z‘(AE)tO'A’Z' = D%Z(AE)t‘szz = szz

e The systematic error f;D;; in PHA files, the quantity
f; 1s recorded in the SYS_ERR column.

e Systematic errors are added in quadrature with sta-

tistical errors; for instance, if one uses X?l to assess the
quality of fit, then o; = \/Dz- + (fiD;)?.

e To use information about systematic errors in a Pois-
son likelihood fit, one must incorporate this informa-
tion into the model, as opposed to simply adjusting
the estimated error for each datum.



Methodologies

It is important to note that the field of statistics may be
roughly divided into two schools: the so-called “frequen-
tist” (or classical) school, and the Bayesian school.

A

e A frequentist assesses a model M () by first assuming
that

— M 1is the “true” model, and

— 0 are the “true” model parameter values,

and then comparing the probability of observing the
dataset D with the probabilities of observing other
datasets predicted by M.

N

e A Bayesian assesses M (6) by comparing its proba-
bility (given the observed dataset D only) with the

probabilities of other parameterized models, given
D.

We have been able to ignore the differences between the
two methodologies when discussing model fitting, up to
NOW.



Statistical Issues: Bayesian Fitting

The centerpiece of the Bayesian statistical methodology
is Bayes’ theorem. As applied in a model fit, it may be
written as

p(6|D) = p(6)

where

e p(D|0) is the likelihood £ (which may be estimated
as exp(—x*/2));
e p(0) is the prior distribution for 6, reflecting your

knowledge of the parameter values before the experi-
ment;

e p(0|D) is the posterior distribution for 6, reflecting
your knowledge of the parameter values after the ex-
periment; and

e p(D) is an ignorable normalization constant.

For now, keep in mind that a Bayesian is more interested
in finding the mode of the posterior distribution than
in determining the maximum likelihood! (Delving into
the hurly-burly world of prior specification is beyond the
scope of this class...which is now over!)




