S-lang-related Bugs: sherpa_eval — CIAO 3.4

M VT"\‘:“\\Chandra URL._http://cxc.harvard.edu/sherpa3.4/bugs/sl_sherpa_eval.html
\i‘:;.'- / X—ray Center Last modified: 21 September 2006
S-lang-related Bugs: sherpa_eval
Bugs

1. sherpa_eval("Iplot <item does not exist>") causes a segmentation fault.
(Mac OS X)

e.g. "Iplot resid" when no source model is defined. The crash occurs only when a script is
evaluated by sish, and it occurs when the script is finishing, after completing all the commands.

There are other commands that cause this problem; the following is not guaranteed to be a complete
list.

¢ create_model()

The script

import("sherpa");
() = create_model("const2d", "bgnd");
message("Finished.");

will = when run by sIsh on OS X — Seg fault after printing the message "Finished.".

Workaround: use sherpa_eval() instead, so in this example it would be

import("sherpa");
() = sherpa_eval("const2d[bgnd]");
message("Finished.");

The bug does not appear to be related to the actual model being created.
¢ get_par("modelname”

get_par() will cause this crash on exit if it is called with the name of the model. It does
not crash when called with either no arguments or with the name of a parameter: e.g.

import("sherpa");

() = sherpa_eval("polynom1d[pl]");
variable pars = get_par("pl");
message("Finished.");

crashes after printing out "Finished." The workaround to either call get_par() and loop
through the returned parameters looking for those whose name matches the model you want
or find out all the parameters for the model of interest and then run get_par() on each
parameter name. For instance the function

define get_model_pars(mname) {

variable pars = Assoc_Type [Struct_Type];
foreach (get_par()) {
variable par = ();

S-lang-related Bugs: sherpa_eval 1

http://cxc.harvard.edu/sherpa3.4/bugs/sl_sherpa_eval.html

S-lang-related Bugs: sherpa_eval - CIAO 3.4

% skip those whose model does not match mname
variable names = strtok(par.name, ".");

if (0 != strcmp(mname, names[0]))
continue;

% could use names[1] instead of par.name to just use the
% name of the parameter (i.e. no model name)
%
pars[par.name] = par;
}

return pars;

}

will return an associative array whose keys are the parameter names of the given model. So,
using the example above

| variable p = get_model_pars("pl"); |

would return an associative array with keys of "pl.c0", "pl.c1", etc.
2.xspec abundan always returns a status of O.

Executing xspec abundan by means of sherpa_eval returns O even when given an incorrect
argument. For example, the following commands work (i.e. return 0 on success and -1 on failure):

sherpa> sherpa_eval("xspec abundan angr")
Abundances set to Anders & Grevesse

0

sherpa> sherpa_eval("xspec abundan”)

-1

However the following do not recognize a failure:

sherpa> sherpa_eval("xspec abundan file foo")
Failed to open requested file with abundances
0
sherpa> sherpa_eval("xspec abundan X")
'X' does not match.
Choose from the following ABUND options (currently ‘file'):
angr feld aneb grsa wilm lodd file
0

3.sherpa_eval("data ...") causes a segmentation fault.
(Mac OS X)

The Chandra X-Ray Center (CXC) is operated for NASA by the

Smithsonian Astrophysical Observatory URL:

. ' p: . . pa3. o] p .
60 Garden Street, Cambridge, MA 02138 USA. http:/fexc.harvard eduﬁ;ifrmiziﬁg kzju Zsl/SIS;htz:n;ef;%B%tml
Smithsonian Institution, Copyright © 1998-2006. All rights reserved. ’ P

S-lang-related Bugs: sherpa_eval

http://cxc.harvard.edu/sherpa3.4/bugs/sl_sherpa_eval.html

