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Motivations:

«“Cooling Flow Problem” (e.g., Tabor & Binney 1993, Fabian 1994,
Peterson etal 2003)

*Entropy “Floor” (e.g., Ponman etal 1999)

*AGNSs in cD galaxies in cooling clusters (e.g., Burns & Owen 1977,
Best etal 2007, Magliocchetti & Brueggen 2007)

*Rough match of energetics (L, ~ L, ~ 10% erg/s)
*Key Questions:
How and how well are AGNs & ICM coupled?
Feedback? (Accretion feeds AGN, AGN outflow limits accretion)

Long-term balance? (e.g., Tabor & Binney 1993)
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Empirical Evidence of AGN Connection:
Radio-filled X-ray cavities & shocks: Hydra

Chandra

KT ~4 keV, R ~ 25 kpc 330 MHz
pV ~ 10%° erg in cavities contours

Shock M ~ 1.2-1.4, R ~ 200 kpc
Nulsen etal 2005 thock ~ 140 Myr, E ~ 1061 erg,
Loy — 2X10% erg/s
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Empirical Evidence of AGN Connection:
X-ray cavities & ICM Ripples: Perseus

Ripples out to ~ 50 kpc
pV ~ 10> erg in cavities Fabian etal 2006
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Empirical Connection:
Correlation of Implied Jet Power and Bondi Accretion Power

9 nearby ellipticals with
cavities & good BH mass
estimates

Allen etal 2006 See also Birzan etal 2008
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Some Issues simulations can help address:
(> 30 yr theory/simulation history)

Efficiency of ICM heating, entropy generation
*Relative roles of active outflow vs buoyant bubbles
Dynamical feedback mechanisms
Stability

*AGN driven convection?

*Sustained feedback?

9 July, 2008 RGs & Chandra



Focus Here on 3D Simulations

Incomplete list of published 3D simulations
addressing some of these issues:

Clarke etal 1997
Churazov etal 2001

Quilis etal 2001

Brueggen etal 2002
Basson & Alexander 2003
Omma etal 2004

Dalla Vecchia etal 2004
Ruszkowski etal 2004
O’Neill etal 2005
Vernaleo & Reynolds 2006
Heinz etal 2006
Ruszkowski etal 2006
Nakamura etal 2007
Ruszkowski etal 2008

Xu etal 2008
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A Set of 3D MHD Jet Simulations

(+ Relativistic Electrons)
O’Neill & Jones 2008

Bipolar, collimated Mach 30 outflows

600x480x480 kpc box (1 kpc resolution)
P = 10°24€10/S

let = 3 kpC

pjet/pl =0.01

Toroidal B field

*AGN at center of ~ 101> M, cluster (NFW potential)

KT,y —3keV

Double B profile with random density fluctuations
Tangled ICM magnetic field

Bplasma ~ 100 (Bcore - 7HG)
No radiative cooling of ICM

*Passive CR’ electrons, shock injection & DSA

9 July, 2008

Adiabatic & radiative (synch, IC) losses
RGs & Chandra



Magnetic Field Intensity

Blue (AGN plasma)
Red (ICM plasma)
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Steady Jets (t,.4 ~ 60 Myr)
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Shocks in Steady M=30 Jets
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Net Energy Fraction Deposited in ICM by Steady Jets

TE(Thermal), KE(Kinetic), GE(Gravitational), ﬂ
BE(Magnetic)

Specific
Entropy

Time (Myr)
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Intermittent Jets (t..., ~ 173 Myr)

end

t.,, =13 Myr
t.g = 13 Myr

Six cycles
Magnetic Field Intensity

Blue (AGN plasma)
Red (ICM plasma)
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Shocks in intermittent jet
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Net Energy Fraction Deposited in ICM by Intermittent Jets

TE(Thermal), KE(Kinetic), GE(Gravitational),
BE(Magnetic)

Specific
Entropy

40 60 80 100 120 140
Time (Myr)

9 July, 2008 RGs & Chandra - 15



Intermittent Jets:
Synthetic X-ray & Radio Observations, t ~ 170 Myr

Color: 2 keV intensity
Contour: 300 MHz

~ 2 arc sec resolution
for D = 240 Mpc

(o i

S pdV work estimate See Pete Mendygral’s poster
consistent with for details
simulation data
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Terminated Jets (Relic) (t

t,, =26 Myr

Magnetic Field Intensity

Blue (AGN plasma)
Red (ICM plasma)
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Plasma Density in Terminated (Relic) Jets

Blue (AGN plasma)
Red (ICM plasma)
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Net Energy Fraction Deposited in ICM by Terminated Jets

TE(Thermal), KE(Kinetic), GE(Gravitational),
BE(Magnetic)

40 60 80 100 120 140
Time (Myr)
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2 keV
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Sustaining Feedback

«Can energy & momentum deposition limit accretion?

o|s there an equilibrium or Limit cycle?
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9 July, 2008

Vernaleo & Reynolds 2006

AGN outflow “fed” by accretion through
Inner radius (10 kpc)

Pt = 10 (dM/dt) ¢4, opening angle 15°
Initially spherical B-law ICM density

Radiative cooling
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Resultant Mass Accretion Rates

Vernaleo & Reynolds 2006

LA

100 150 200
t (1 0° years)

Fic. 5.—Mass accretion rate for feedback model (run E). [See the electronic

edition of the Journal for a color version of this figure.|
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Vernaleo & Reynolds 2006
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AGN Energy Is Channeled

RGs & Chandra

P/p5/3
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Channel effect can be reduced

Poor collimation of AGN outflow
(e.g., Sternberg & Soker 2008)

ICM Inhomogeneities & dynamics
(e.g., Heinz etal 2006)

--Of course many (most) real objects show
clear breaks in simple, axial symmetry

RGs & Chandra
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AGN Outflow into a Dynamic ICM

Left (density)

Right (entropy)
~10* M, cluster from SPH

simulation t=0, 10, 20, 40, 80, 160 Myr
Disturbed, with large-scale

_ (top to bottom)
shear & rotation

AGN jet on 33 Myr
Pt = 10% erg/s, M = 32
Directional “jitter” 20°

Net entropy increase
In inner ~100 kpc ~ 25%

Heinz etal 2006
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ICM/ AGN Feedback
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-

10”E
10"

M(<r) [Msun]

100
r [kpc]

Figure 3. bottom panel: cumu
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ion after 1 Ayrs is consistent with th

Heinz etal 2006
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e mass My within radius r as a function

Mass Distribution --- channel is disrupted by ICM

Deposited energy becomes broadly distributed

6 [degrees]

Figure 5. Angular distribution (relative to mean jet axis) of excess energy
A F injected by jet into thermal gas phase as percentage relative to total
injected energy. For comparison, the dotted line shows the isotropic case.
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Bubble Models:
Depositing Energy Only

«Study buoyant transport

*Explore stability issues

RGs & Chandra
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Preformed Bubbles tend to evolve into rings

Hot Bubble:

Bubble animation Inflated in stratified atmosphere
MHD with weak field
t. . = 10 Myr; h/c, = 25 Myr

O’Neill etal 2008
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Long inflation leads to “jets”

Brueggen etal 2002

RGs & Chandra

3,

7.69

in the previous plot
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Magnetic Fields Can Be Some Help to Stabilize
Against Fragmentation (Details Matter)

t =50, 80, 115 Myr
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Conclusions

*AGNs likely do significantly stir and heat ICMs
Effect on accretion depends on mechanisms to broaden influence

& redistribute ICM (e.g., poor or varying collimation,
dynamic ICM

«Simulations can be an invaluable tool here

*Observational energy estimates of jet power are reasonable measures
*Preformed buoyant bubbles not a good model for relic AGN plasma
*Even weak magnetic fields can play important roles; topology dependent
*/AGN & ICM magnetic fields likely to become interconnected
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The End

Thanks!

RGs & Chandra
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Relic Source Magnetic fields @ 120 Myr, R ~ 200 kpc

Before Bubble arrives
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MS0735.6+7421

Composite:
Chandra, HST, VLA

McNamara etal 2005
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Cavities ~ 200 kpc diam

pV ~ 6x1061 erg
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o, in the case of the 2-kpe jets. The intensity scaling and length-scale is the same for

RGs & Chandra

Omma
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