EXPLORING THE RELATIONSHIP BETWEEN (RL) QUASARS AND MICROQUASARS

Sera Markoff (University of Amsterdam)

Outline

Introduction Some X-ray binary phenomenology XRB state ⇔ AGN class mapping? Conclusions and outlook

Jargon: Microquasars are just "outgoing" X-ray binaries

Black hole jets: similar across the mass scale?

XRB Behavior: The Hardness-Intensity Diagram (HID) – schematic view

XRB Behavior: The Hardness-Intensity Diagram — X-ray spectrum

(Done, Gierlinski & Kubota 2007)

XRB Behavior: The Hardness-Intensity Diagram (HID)— real data with states

XRB Behavior: The Hardness-Intensity Diagram — what are the jets doing?

So how does all this relate to AGN?

Backing up, *should* this all relate to AGN??

- * For black holes with roughly the same spin, does accretion behavior scale predictably with mass/power?
 - Accretion off single star vs. off central cluster/gas
 - Spin depends on formation/accretion history, and we don't yet have a surefire way to measure it
 - We don't have a fully self-consistent theory of everything going on in accretion

So how does all this relate to AGN?

- A Mass scaling makes testable predictions
- * The main effect of black hole mass difference will be in the timescales, $\tau_{dyn} \propto size \propto M$:

 $T_{XRB} \sim week @ 10 M_{\odot}$

 $T_{AGN} \sim 10^6 \text{ years } @ 10^8 \text{ M}_{\odot} !!$

- If such scaling exists, consequences are grand: some AGN classes could be "unified" in a HID of their own
 - We can test this idea, by searching for trends discovered from XRB monitoring in AGN populations

Evidence that HIDs (or equiv. evolution) are universal to accreting sources

There's certainly reason to think AGN would also have an equivalent evolution/states. NS's and WD's do!

Evidence that HIDs (or equiv.) are universal to accreting sources – AGN

For (cyclic)AGN, hardness is not the best diagnostic. Körding et al. 2006 suggest "Disk fraction/luminosity diagrams" (DFLG)

Evidence that HIDs (or equiv.) are universal to accreting sources – AGN

For (cyclic)AGN, hardness is not the best diagnostic. Körding et al. 2006 suggest "Disk fraction/luminosity diagrams" (DFLG)

Evidence that HIDs (or equiv.) are universal to accreting sources – AGN

For (cyclic)AGN, hardness is not the best diagnostic. Körding et al. 2006 suggest "Disk fraction/luminosity diagrams" (DFLG)

Characteristic timescales scale with black hole mass and inversely with $\dot{M} - PSDs$

Hard XRB state \Leftrightarrow LLAGN, FR Is

Strong case on both empirical and theoretical grounds

- * "Fundamental plane of black hole accretion" linking radio and X-ray luminosities with black hole mass
- Same physical models fit broadband data across the mass scale with the same physical parameters

XRB hard state – Radio/Xray correlation

Mass scaling of jet break frequency

Fundamental plane of black hole accretion

2005, Merloni et al. 2006, Kording et al. 2006) 2003, Falcke, Körding & Markoff 2004, Markoff (Markoff et al. 2003, Merloni,Heinz & diMatteo

Modeling hard state XRBs

Modeling simultaneous data: hard state

/ligliari et al. 07, Gallo et al. 07, Maitra et al. 08) Markoff et al. 03, Markoff, Nowak & Wilms 05,

M81: Hard state equivalent (LLAGN)?

(Markoff et al. 2008)

XRB/LLAGN model comparisons

I < 10-7 I -

Parameter	HS-XRBs	M81	A0620	Sgr A* 🔸
M (M⊙)	~10	7x10 ⁷	~10	4x10 ⁶
R ₀ (R _g)	2—20	2.4	2—7	2.5
H ₀ (R ₀)	1.5*	1.5*	1.5* –2.8	1.5*
z _{acc} (R _g)	10—400	144	3–1250	>104
Pelec	2.4–2.9	2.4	2.2– <mark>3.4</mark>	>3.8
PL frac	0.75*	0.75*	<0.75*	<0.01
T _e (K)	2–5x10 ¹⁰	1x10 ¹¹	2x10 ¹⁰	1x10 ¹¹
equip $(1/\beta)$	1–5	1.4	1.5	>10

(SM, Nowak & Wilms 2005, Migliari et al. 2007, Gallo et al. 2007, SM, Bower & Falcke 2007, SM et al. 2008, Maitra et al. subm., SM & van Oers, in prep., SM, Tramper, et al. in prep.)

XRB state \Leftrightarrow AGN Mapping?

Summary/Outlook

- X-ray binaries seem remarkably like scaled down AGN analogs (despite many reasons they shouldn't be...)
- Faster timescales valuable for studying evolution that may relate/unify AGN classes, cast light on jet formation and physics
- * Need more complete multiwavelength AGN samples to compare with trends found in XRBs
- * Need better theoretical understanding of state evolution (disk recessing? What's the difference between the two kinds of jet ejecta? role of spin?!?)
- ***** Chandra is key (sensitivity/resolution) for both the above points!!
- Big questions: what drives the timescale of the state transitions for XRBs/AGN, and how can we use XRB evolution to understand AGN cycles? How can we know where on its potential cycle a given AGN is and what triggers activity?

What we're up against: Cyg X-1

campaign by Markoff, Nowak, Movie courtesy M. Böck, from monitoring Wilms, et al.

JET LINE AREA:

2 - 50% L_{Edd}.

- High-frequency QPOs (after).
- Type A & B QPOs (after).
- See radio ejecta (fast) each "crossing" of jet line.
- RMS drop ("The Zone") associated with ~0.2 Hz lowest freqency Lorentzian, close to ejecta time.

?

- HIMS: Disk starts near ISCO.
- Transition starts around 2 50% L_{Edd}.
- Type C QPOs.
- IR drops.
- Radio starts going optically thin and variable (new ejecta?).

