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PWNe and Their SNRs!
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•  Pulsar Wind!
  - sweeps up ejecta; shock decelerates !
    flow, accelerates particles; PWN forms!

•  Supernova Remnant!
  - sweeps up ISM; reverse shock heats!
    ejecta; ultimately compresses PWN; particles accelerated at forward shock generate!
    magnetic turbulence; other particles scatter off this and receive additional acceleration!

Gaensler & Slane 2006 
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•  Expansion boundary condition at Rw    !
  forces wind termination shock at RN    !
  - wind goes from            inside Rw to!
                at outer boundary!
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v ≈ c / 3

€ 

v ≈ RN / t

•  Pulsar accelerates!
  particle wind!
-  wind inflates bubble!
  of particles and !
  magnetic flux!
-  particle flow in B-field!
  creates synchrotron!
  nebula!
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   - spectral break at!

    where synchrotron !
    lifetime of particles!
    equals SNR age!
  - radial spectral variation!
    from burn-off of high!
    energy particles!
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•  Pulsar wind is confined by pressure!
  in nebula!
  - wind termination shock!

obtain by integrating!
radio spectrum!
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•  Observations resolve the termination!
  shock region in some PWNe!
  - spin-down of pulsar and broadband!
    spectrum of nebula place constraints !
    on the structure and evolution of the !
    PWN!
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Pulsar Wind Nebulae!
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Broadband Emission from PWNe!
•  Spin-down power is injected into the PWN at a!
  time-dependent rate!

•  Based on studies of  Crab Nebula, there appear
 to be two populations – relic radio-emitting
 electrons and electrons injected in wind (Atoyan
 & Aharonian 1996)!

Zhang et al. 2008!

•  Get associated synchrotron and IC emission from  electron population, and 
some assumed B field (e.g. Venter & dE Jager 2006 

synchrotron!
inverse-!
Compton!
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•  Oblique rotator model for!
  pulsar produces a toroidal!
  field structure in the !
  equatorial zone!
  - accompanied by radial particle wind!

•  Along equator, rotating !
  dipole field produces alternating!
  polarity in wound-up toroidal!
  field!
  - “striped” wind!

•  Near the pulsar, (outside the!
  light cylinder) the wind is !
  dominated by E x B, not particle!
  flux!

The Pulsar Wind!

Spitkovsky 2006 
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The Pulsar Wind Zone!
•  Rotating magnetosphere!
  generates E X B wind!
  - direct particle acceleration!
    as well, yielding ~104 Edot               !
    (e.g. Michel 1969; Cheng,!
     Ho, & Ruderman 1986)!
•  Magnetic polarity in!
  wind alternates spatially!
  - magnetically “striped” wind!
  - does reconnection result in!
    conversion to kinetic energy?!
    (e.g. Coroniti 1990, Michel!
    1994, Lyubarsky 2003)!
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•  Rotating magnetosphere!
  generates E X B wind!
  - direct particle acceleration!
    as well, yielding ~104 Edot               !
    (e.g. Michel 1969; Cheng,!
     Ho, & Ruderman 1986)!
•  Magnetic polarity in!
  wind alternates spatially!
  - magnetically “striped” wind!
  - does reconnection result in!
    conversion to kinetic energy?!
    (e.g. Coroniti 1990, Michel!
    1994, Lyubarsky 2003)!

•  Wind expands until ram!
  pressure is balanced by!
  surrounding nebula!
  - flow in outer nebula restricts!
    inner wind flow, forming!
    pulsar wind termination!
    shock!

The Pulsar Wind Zone!
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PWN Jet/Torus Structure!

Komissarov & Lyubarsky 2003 
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•  Poynting flux from outside pulsar light !
  cylinder is concentrated in equatorial!
  region due to wound-up B-field!
  - termination shock radius decreases with!
    increasing angle from equator (Lyubarsky 2002)!

•  For sufficiently high latitudes, particle flow is     !
  deflected back inward!
  - collimation into jets may occur!
  - asymmetric brightness profile from Doppler!
    beaming!

•  Collimation is subject to kink instabilities!
  - magnetic loops can be torn off near TS and!
    expand into PWN (Begelman 1998)!
  - many pulsar jets are kinked or unstable,!
     supporting this picture !



Chandra Fellows Symposium 2008!Patrick Slane (CfA)!

PWN Jet/Torus Structure!

Del Zanna et al. 2006!
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•  Poynting flux from outside pulsar light !
  cylinder is concentrated in equatorial!
  region due to wound-up B-field!
  - termination shock radius decreases with!
    increasing angle from equator (Lyubarsky 2002)!

•  For sufficiently high latitudes, particle flow is     !
  deflected back inward!
  - collimation into jets may occur!
  - asymmetric brightness profile from Doppler!
    beaming!

•  Collimation is subject to kink instabilities!
  - magnetic loops can be torn off near TS and!
    expand into PWN (Begelman 1998)!
  - many pulsar jets are kinked or unstable,!
     supporting this picture !
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The Crab Nebula in X-rays!
Just like the model! (Now!
why is that?...)!

•  Curved X-ray jet appears!
  to extend all the way to the!
  neutron star!
  - faint counterjet also seen!
  - jet axis ~aligned with pulsar proper!
    motion, as with Vela Pulsar (more on that later…)!

•  Inner ring of x-ray emission!
  associated with shock wave!
  produced by matter rushing!
  away from neutron star!
- corresponds well with optical wisps!
  delineating termination shock boundary!

jet!

ring!

v!
•  Emission is dominated by a!
  bright toroidal structure!
  - equatorial-dominated outflow!
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Kes 75!

•  Bright wind nebula powered by PSR !
  J1846-0258 (dE/dt = 1036.9 erg/s)!
  - jet-like structure defines rotation axis!

•  Deep Chandra observation reveals !
 inner/outer jet features, clump in!
 north, and abrupt jet termination in south!
 - jet spectrum is harder than surrounding regions,  high-velocity (uncooled) flow!
 - clumps along jet axis vary in brightness over time!

Ng et al. 2008 
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Curved Jets and Instabilities!

DeLaney et al. 2006 

PSR 1509-58 

•  Jet in PSR 1509-58 is curved, like in Crab!
  - variations in structure seen on timescale of!
    several months (v ~ 0.5c)!

•  Jet in Vela is wildly unstable, showing !
  variations on timescales of weeks to months!
   - changes in morphology suggest kink or sausage!
     instabilities (Pavlov et al. 2003)!

Pavlov et al. 2003 
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Pulsar Jets – and Lots of Them!
Kargaltsev & Pavlov 2008!•  Jets or jet-like structures are observed!

  for ~20 young pulsar systems!
  - the more we look the more we find,!
    though evidence is weak for some!
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Pulsar Jets – and Lots of Them!
Kargaltsev & Pavlov 2008!•  Jets or jet-like structures are observed!

  for ~20 young pulsar systems!
  - the more we look the more we find,!
    though evidence is weak for some!
  - many more show toroidal structures!
    or extended tails (possibly also jets)!

•  Sizes vary from <0.1 pc (CTA 1) to!
  >10 pc (PSR B1509-58)!
  - no strong connection with dE/dt!

•  Jet luminosity ranges are huge: !

€ 

5×10−7 −  6×10−3 ˙ E 
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Pulsar Jets – and Lots of Them!
Kargaltsev & Pavlov 2008!•  Jets or jet-like structures are observed!

  for ~20 young pulsar systems!
  - the more we look the more we find,!
    though evidence is weak for some!
  - many more show toroidal structures!
    or extended tails (possibly also jets)!

•  Sizes vary from <0.1 pc (CTA 1) to!
  >10 pc (PSR B1509-58)!
  - no strong connection with dE/dt!

•  Jet luminosity ranges are huge: !

•  Typical photon index Γ ~ 1.6 - 2!
  - generally, uncooled synchrotron spectrum  (Vela jets appears even harder)!

•  Where known, outflow velocities are subsonic:!
€ 

5×10−7 −  6×10−3 ˙ E 

€ 

v flow ≈ 0.1− 0.5c
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•  Optical filaments show dense ejecta!
  - total mass in filaments is small; still!
    expanding into cold ejecta!

•  Rayleigh-Taylor fingers produced as!
  relativistic fluid flows past filaments!
  - continuum emission appears to reside!
    interior to filaments; filamentary shell!

The Surrounding Ejecta: Crab Nebula!

Jun 1996 
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The Surrounding Ejecta: 3C 58!
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PWN evolution!

Measurements of PWN 
evolution and swept-up 
mass constrain initial 
spin and its evolution!
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The Surrounding Ejecta: 3C 58!

•  Chandra reveals complex structure!
  of wind shock zone and surroundings!

•  Spectrum reveals ejecta shell with!
  enhanced Ne and Mg!
  - PWN expansion sweeps up and!
    heats cold ejecta!

•  Mass and temperature of swept-up!
  ejecta suggests an age of ~2400 yr!
  and a Type IIP progenitor, similar to!
  that for Crab (Chevalier 2005)!

•  Temperature appears lower than !
  expected based on radio/optical data!
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3C 58 Expansion w/ IXO!

•  IXO baseline gives ~16000 counts in Ne line in a ~75 ks observation. !

 - thus, we will get 100 counts from this line in a resolution element 12 arcsec on a side!
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3C 58 Expansion w/ IXO!

•  Measure velocity broadening to !
  determine age based on size!
  - connect with evolution to determine!
    initial spin and spindown properties!
•  Maximum velocities in optical are !
    900 km s-1!

  - to detect broadening we need !
    resolution of about 2.7 eV !
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•  Vela X is the PWN produced by the Vela pulsar!
  - located primarily south of pulsar!
  - apparently the result of relic PWN being disturbed by asymmetric passage of the!
    SNR reverse shock!

•  Elongated “cocoon-like” hard X-ray structure extends southward of pulsar!
  - clearly identified by HESS as an extended VHE structure!
  - this is not the pulsar jet (which is known to be directed to NW); presumably the!
    result of reverse shock interaction!

Evolution in an SNR: Vela X!

van der Swaluw, Downes, & Keegan 2003 
Blondin et al. 2001 

t = 10,000 yr t = 20,000 yr t = 30,000 yr t = 56,000 yr 
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Evolution in an SNR: Vela X!

•  XMM spectrum shows nonthermal and ejecta-rich thermal emission from cocoon!
  - reverse-shock crushed PWN and mixed in ejecta?!

•  Radio, X-ray, and γ-ray measurements appear consistent with synchrotron and I-C !
  emission from power law particle spectrum w/ two spectral breaks!
  - density derived from thermal emission 10x lower than needed for pion-production to!
    provide observed γ-ray flux!
  - much larger X-ray coverage of Vela X is required to fully understand structure!

LaMassa et al. 2008!
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G327.1-1.1: Another Reverse-Shock Interaction?!

Temim et al. 2008 

•  G327.1-1.1 is a composite SNR!
  with a bright central nebula!
  - nebula is offset from SNR center!
  - “finger” of emission extends toward!
    northwest!

•  X-ray observations reveal a!
  compact source at tip of finger!
  - trail of emission extends into PWN!
  - Lx suggests Edot ~ 1037.3 erg s-1 !

•  Compact X-ray emission is extended; pulsar torus?!
  - PWN has apparently been disturbed by SNR reverse shock,!
    and is now re-forming around pulsar, much like Vela X!

•  Curious prong-like structures extend in direction !
  opposite the relic PWN!
  - these prongs appear to connect to a bubble blown by!
    the pulsar in the SNR interior, apparently in the region !
    recently crossed by the reverse shock
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Conclusions!
•  Recent X-ray observations show that jet/torus structures around pulsars!
  are common!
  - jet sizes and luminosities span a huge range; structure can be highly!
    variable and unstable!

•  PWNe are reservoirs of energetic particles injected from pulsar!
  - synchrotron and inverse-Compton emission places strong constraints!
    on the underlying particle spectrum and magnetic field!

•  Modeling of broadband emission constrains evolution of particles and B field!
  - modeling form of injection spectrum and full evolution of particles still!
    in its infancy!

•  Reverse-shock interactions between SNR and PWNe distort nebula and!
  may explain TeV sources offset from pulsars!
  - multiwavelength observations needed to secure this scenario (e.g. Vela X)!


