Measuring the Cosmological Distance Scale with Spectroscopic and Photometric Data

Anna Patej University of Arizona

Based on Patej & Eisenstein (2017) -- 1709.03514

Einstein Fellows Symposium, October 12-13, 2017

Outline

- Baryon Acoustic
 Oscillations (BAO)
 Background
- Measuring BAO in Sparse
 Spectroscopic
 Samples
- Future Prospects

Baryon Acoustic Oscillations

Relic peak in the clustering of galaxies from sound waves in the early universe

Baryon Acoustic Oscillations

• BAO: standard ruler in cosmology

Measuring BAO

Correlation function ξ(R) from galaxy pairs

Measuring BAO

- Require sufficient density of spectroscopically observed galaxies
- Can we amplify the signal-to-noise for sparse samples?

Figure Credit: Alam et al. (2017)

BAO with Sparse Samples

- · We can get very dense photometric galaxy samples
- Cross-correlating the sparse spectroscopy and dense photometry \rightarrow a projected correlation function

Data

Fairly sparse spectroscopic sample: the BOSS CMASS z > 0.6 tail

~200,000 galaxies

Dense photometric sample: from SDSS DR9

> ~6.6 million galaxies (Law-Smith & Eisenstein 2017)

Figure Credit: Alam et al. (2017)

Results

• We find a ~2.8 σ preference for the BAO in the crosscorrelation at *z* = 0.64

Results

• Measured D_M at z = 0.64

Future Prospects

- The Dark Energy Spectroscopic Instrument (DESI) and DESI Imaging Surveys (legacysurvey.org):
 - DECam Legacy Survey (DECaLS)
 - Mosaic z-band Legacy Survey (MzLS)
 - Beijing-Arizona Sky Survey (BASS)

Image courtesy of A. Dey

Photo Credit: NOAO/AURA/NSF

Imaging Surveys Photometry

• DESI imaging surveys are providing high quality images in *grz* that are 1-2 mag deeper than SDSS

Image credits: Arjun Dey, Kyle Willett, & Galaxy Zoo: DECaLS

Future Prospects

- Possible sparse samples:
 - eBOSS quasars (Zhao et al. 2016)
 - Euclid OIII emission line galaxies at z~2 (Mehta et al . 2015)

Conclusions

- We found a 2.8σ preference for the BAO in the crosscorrelation of a fairly sparse spectroscopic sample with a dense photometric sample and measured D_M(*z*=0.64)
- There are several possible future directions with different sparse samples, for example, applying this method to eBOSS quasars with DESI imaging surveys photometry

Thank you!