(More)Tools for Characterizing a Population of Massive Black Hole Binaries

Daniel J. D'Orazio 2017 Einstein Symposium

Galaxies merge, but do the black holes?

- * **Step I:** *Dynamical friction* quickly brings the black holes to the inner few parsecs of the new galaxy - forming a binary
- * Step 2: Binary either stalls at ~ lpc, or gas, non-spherical stellar distribution, or... shrinks the orbit further
- * Step 3: If the binary orbit can decay to ~0.01-0.1pc, gravitational radiation will merge the binary in less than a Hubble time

Begelman, Blandford, Rees 1980

Galaxies merge, but do the black holes? How do we find out?

- * The fraction of MBHBs at different separations would elucidate the mechanisms which bring MBHBs together
 - * The low frequency gravitational wave background and merger events will probe the MBHB environment at late inspiral
 - * Electromagnetically identified population could directly trace MBHB evolution over a wider range of evolutionary states (orbital separations)

Electromagnetic MBHB evidence/searches

Relativistic Doppler boost as the cause of periodic variability

D'Orazio, Haiman, Schiminovich 2015, Nature; arXiv: 1509.04301

D'Orazio, Haiman, Schiminovich 2015, Nature; arXiv: 1509.04301

MBHB candidate: PG 1302

Graham+2015, Nature D'Orazio, Haiman, Schiminovich 2015, Nature; arXiv:1509.04301

MBHB Candidates from periodic quasar searches

~150 MBHB Candidates from

Graham+2015b (CRTS) Charisi+2016(PTF)

How do we know if these are real?

* Some new tools?

I) Infrared light echoes of periodic emission from MBHBs arXiv:1702.01219

2) MBHB self lensing arXiv: 1707.02335

3) Sub-mm VLBI Imaging!? arXiv:1710.????

MBHB self lensing: further evidence for MBHBs?

$$\begin{aligned} \theta_E &\leq \sqrt{\frac{4GM}{c^2}} \frac{D_{LS}}{D_L D_S} \approx \sqrt{\frac{2R_s a}{D^2}} \quad \text{Probability} = \frac{\Delta I \text{ less than Einstein rad}}{\text{All Inclinations}} \approx \frac{\theta_E}{\theta_{\text{bin}}} \\ \theta_{\text{bin}} &\leq \frac{a}{D} \\ \frac{\theta_E}{\theta_{\text{bin}}} \approx \sqrt{\frac{2R_s}{a}} = \sqrt{\frac{2}{n_a}} \quad \text{Timescale} = \frac{\text{Extent of Einstein radius}}{\text{Orbital Extent}} \times \text{Period} \approx \frac{\theta_E}{\theta_{\text{bin}}} P \end{aligned}$$

D'Orazio & Di Stefano 2017 (*arXiv*:1707.02335)

MBHB self lensing: further evidence for MBHBs?

MBHB Candidates from periodic quasar searches

~150 MBHB Candidates from

Graham+2015b (CRTS) Charisi+2016(PTF)

MBHB self lensing: further evidence for MBHBs?

MBHB self lensing: Doppler + lensing

D'Orazio & Di Stefano 2017 (*arXiv:1707.02335*)

Summary

* Characterization of MBHB population with EM signatures can constrain expected gravitational wave background as well as astrophysics (accretion, mutual growth of BHs and galaxies)

*New tool for finding MBHBs: self lensing

- * MBHB self-lensing provides:
 - * Unique identifier: achromatic and known phase if coupled with Doppler boost
 - * Probe of accretion physics finite source lensing
 - * Constraints on binary inclination and mass-ratio
 - * Orbit tracker precession?
 - * Population constraints: in unison with e.g. PTA GWB
- * Must look for spiky periodic flaring, which may have been missed so far!