Low-frequency Radio Observations of Galaxy Cluster Merger Shocks

Reinout van Weeren

Harvard-Smithsonian Center for Astrophysics

H. Intema, A. Stroe, G. Ogrean, F. Andrade-Santos W. Forman, C. Jones, M. Brüggen, H. Röttgering, A. Bonafede, G. Brunetti, M. Hoeft
Small fraction of the energy can be channeled into the production of Cosmic Rays.

- Internal merger shocks
- Accretion shocks

Millennium Simulation, Springel+ 2005

blue: X-rays
red: radio synchrotron
QUESTIONS

- Physics of shocks & turbulence
- Origin of Cosmic Rays (CR) and magnetic fields in the ICM
 - Particle acceleration mechanisms
 - Acceleration efficiency of shocks/turbulence
 - Magnetic field amplification
- Contribution of CRs and B-fields to the ICM pressure budget
DIFFUSE CLUSTER RADIO EMISSION

latest review paper: Brunetti & Jones 2014

MACS J1752.0+4440 (van Weeren+ 2012; Bonafede+ 2012)

Radio (WSRT) + X-rays (XMM)

GIANT RADIO RELICS:

• Cluster outskirts, elongated
• Radio emission traces merger shocks
• Particle acceleration mechanism:
 • diffusive shock acceleration? (Ensslin+ 1998)

GIANT RADIO HALOS:

• Smooth, centrally located
• Particle acceleration mechanism:
 • Radio emission generated via turbulent re-acceleration mechanism? (Brunetti+01, ...)
 • Radio emission from secondary electrons (products of hadronic collisions)? (Dennison 1980, ...)

Abell 2744; Feretti+ 2012, Govoni+ 2001

Radio Halo

Radio Relics

1 Mpc

Radio image + radio contours
DIFFUSE CLUSTER RADIO EMISSION

latest review paper: Brunetti & Jones 2014

Radio (WSRT) + X-rays (XMM)

giant radio relics:
- Cluster outskirts, elongated
- Radio emission traces merger shocks
- Particle acceleration mechanism: diffusive shock acceleration? (Ensslin+ 1998)

MACS J1752.0+4440 (van Weeren+ 2012; Bonafede+ 2012)

Abell 2744; Feretti+ 2012, Govoni+ 2001

latest review paper: Brunetti & Jones 2014

Radio Halo

GIANT RADIO HALOS:
- Smooth, centrally located
- Particle acceleration mechanism:
 - Radio emission generated via turbulent re-acceleration mechanism? (Brunetti+01, ...)
 - Radio emission from secondary electrons (products of hadronic collisions)? (Dennison 1980, ...)
DIFFUSE CLUSTER RADIO EMISSION

latest review paper: Brunetti & Jones 2014

Radio (WSRT) + X-rays (XMM)

GIANT RADIO HALOS:

- Smooth, centrally located
- Particle acceleration mechanism:
 - Radio emission generated via turbulent re-acceleration mechanism? (Brunetti+01, ...)
 - Radio emission from secondary electrons (products of hadronic collisions)? (Dennison 1980, ...)
BACKGROUND: RADIO SPECTRAL INDEX

Acceleration produces power-law particle distribution

\[n(E) \propto E^{-p}, \quad p = 1 - 2\alpha \]

“injection spectral index” \(\alpha \) set by acceleration mechanism/source physical condition
Acceleration produces power-law particle distribution

\[n(E) \propto E^{-p} \quad p = 1 - 2\alpha \]

“injection spectral index” \(\alpha \) set by acceleration mechanism/source physical condition

Energy losses radiating electrons:
- synchrotron losses
- Inverse Compton losses

“Spectral ageing”/“electron cooling”

\[\frac{dE}{dt} \propto -E^2 \]

→ spectrum steepens and curves with time
Origin of the radiating electrons?

- Radiative lifetime of electrons is 10^8 yr $<<$ diffusion timescale (Jaffe 1977) \rightarrow electrons are **accelerated in-situ** in the ICM.
- Merger connection: giant radio relics and halos are **only** found in disturbed galaxy clusters.
- ICM: Particle acceleration poorly understood in this regime.

Relics: Diffusive shock acceleration (DSA)?

- Particles accelerated by multiple crossings of a shock front (first order Fermi process).
- Recent PIC simulations show efficient electron acceleration for low-Mach number shocks.

Re-acceleration?

- Relativistic particles accumulated over the lifetime of a cluster.
Non-thermal component of the ICM (cosmic rays)

IRXS J0603.3+4214 (z=0.225)
Found by inspecting 1.4 GHz NVSS & 325 MHz WENSS radio survey images
Non-thermal component of the ICM (cosmic rays)

1 Mpc

GMRT radio image (325 MHz)

Radio Relic ("Toothbrush")
Radio Halo

1RXS J0603.3+4214 (z=0.225)
Found by inspecting 1.4 GHz NVSS & 325 MHz WENSS radio survey images

XMM X-ray image (+radio contours)

Thermal component of the ICM

Follow-up XMM observations by Ogrean+2013:
• $L_X \sim 10^{45}$ erg s$^{-1}$, $T = 7.5$ keV
• main merger event in the NS direction
• evidence for shocks (M\sim1.5) via surface brightness jumps

Ogrean+2013; van Weeren+2012
Follow-up XMM observations by Ogrean+2013:

- $L_X \sim 10^{45} \text{ erg s}^{-1}$, $T = 7.5 \text{ keV}$
- main merger event in the NS direction
- evidence for shocks ($M \sim 1.5$) via surface brightness jumps
LOFAR

• New radio telescope operating at 10-250 MHz

• About 50 antenna stations
 • 40 stations in the Netherlands
 • stations in Germany, UK, Sweden, France, Poland

• Large range of baselines (100 m - 1,000 km)

• Phased-array technology (multi-beaming)
LOFAR 120-180 MHz

One pointing full FOV
4 x 4 degr
LOFAR results

120-180 MHz, 95 microJy/beam rms noise

LOFAR vs GMRT

LOFAR
resolution: 7 arcsec
noise: 95 microJy/beam

GMRT
resolution: 22 arcsec
noise: 1100 microJy/beam

emphasize large-scale emission with weighting

(6 arcsec)

(35 arcsec)

(22 arcsec)
LOFAR results

120-180 MHz, 95 microJy/beam rms noise

1 Mpc

LOFAR vs GMRT

LOFAR
resolution: 7 arcsec
noise: 95 microJy/beam

GMRT
resolution: 22 arcsec
noise: 1100 microJy/beam

emphasize large-scale emission with weighting

Chandra + LOFAR

(35 arcsec)
(22 arcsec)
GMRT 610 MHz image

shock: particle injection

energy losses

Spectral index
GMRT 610 MHz image

shock: particle injection

energy losses

energy losses

GMRT 610 MHz - LOFAR 150 MHz

Spectral index
shock: particle injection

energy losses

GMRT 610 MHz - LOFAR 150 MHz

Spectral index

JVLA 1.5 GHz - LOFAR 150 MHz

Re-acceleration due to turbulence ??

energy losses
Puzzles

- North: Mismatch between relic emission and shock location
- South: Shock but no bright radio relic

Chandra 0.5-2.0 keV

best fit shock position

Ogrean+ 2013
Puzzles

- North: Mismatch between relic emission and shock location
- South: Shock but no bright radio relic

Ogrean+ 2013

Chandra 0.5-2.0 keV
SUMMARY

• First ultra-deep LOFAR cluster image
• Radio halos: CR electrons from shocks re-accelerated by merger induced turbulence?
• Puzzle: Shock without clear radio relic?
• Puzzle: Mismatch between relic and shock location?