
Removing Background Flares

Michael Nowak, MIT-CXC, October 23, 2007

This memo is a follow-on to my memo of June 25, 2007. I am again going with the assumption that the
background is well-characterized, so the question becomesone of whether or not removing a background
flare improves the signal-to-noise for a source. I will be using the following definitions throughout. We
presume that we have a total observation duration,To, over which timein a given source region the detector
collects a baseline ofB background counts andS source counts. During the observation, a flare of duration
Tf induces anadditional Bf counts in the source region. The fraction of time without a flare is defined
asF ≡ (To − Tf )/To. The ratio of the background rate during the flare to the baseline rate is given by
R ≡ 1 + (Bf/Tf )/(B/To).

As discussed in the previous memo, removing the flare increases the source signal-to-noise for

R ≥ 1 + F−1(S/B + 2) . (1)

Thus, we immediately find that unlessR ≥ 1 + F−1 ≥ 2, removing the flare never improves the signal-to-
noise. Realistically, our criterion for flare removal will be even more stringent, and we should only exclude
flares withR >

∼ 5 (perhaps even> 10).
The main quandary that we have is where to place this threshold. Flare removal may improve the signal-

to-noise for fainter, more extended1 sources, while it may decrease the signal-to-noise for brighter, more
point-like sources. So long as the background rate increases by greater than a factor of two, above a certain
threshold of source size and integration time, flare removalwill improve the source signal-to-noise. Taking
a fiducial background,B0, that is detected within a source region of radiusr0 over a timeT0 (i.e., so that
B = B0(r/r0)

2(T/T0)), then background flare removal improves the source signal-to-noise if:
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In Fig. 1, I plot the change in S/N that occurs when excising background flares of given durations (10%,
20%, or 50% of the lightcurve) for 10 count and 100 count sources of given radii (ranging essentially from
point sources up to a 1 arcmin radius). As references, I assume that the flare increases the background rate
either by a factor of 5 or 10. In general, we see that the S/N slightly decreases for point sources, and only
increases for sources with radii>∼ 0.1–0.3 arcmin. Even in these latter cases, the improvement of S/N is
mild.

Another way of looking at this is to try and determine what amplitude flare must be removed to go from
a given signal-to-noise in the presence of the flare (let us call this SN f ) to a given signal-to-noise for the
flare removed (let us call thisSN nf ). We can again look at this for a fiducial background rate, with the total
background counts again scaling as radius squared multiplied by time. Fixing the desired no-flare signal-
to-noise is fixing the relationship between extraction radius and source counts, for a given fraction of time
without flares,F . Choosing the signal-to-noise in the presence of the background flare then fixes the ratio
of flare background rate to the baseline level. Specifically,we have:
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and
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1We only care about the extent of the source on the detector. For purposes of flare removal, it doesn’t matter whether the source
extent is due to being resolved on the sky, or is due to being viewed far off axis.
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Figure 1: Change in S/N achieved vs. source size (assuming a given radius, a 50 ksec observation, and a baseline
background rate of3 × 10−7 cts/sq. pixel/sec, for excising a 5× increase in background rate (left) or a 10× increase
in background rate (right). Black lines assume the flare covers 10% of the observation time, dark grey 20%, and light
gray 50%. Dotted lines assume 10 counts in the source and solid lines assume 100 counts in the source.

Figure 2: Left: The source radius above which removing the background flare increases the signal-to-noise vs. the
background flare factor increase. Same assumptions about integration time and mean background rate as in Fig. 1, and
same color scheme.Right: The source radius above which removing the background flaresincreases signal-to-noise
vs. total source counts for background flares5× (dotted lines) and10× (solid lines) the baseline background level.
Black lines assume the flare covers 10% of the observation time, dark grey 20%, and light gray 50%.
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Figure 3:Left: Under the same assumptions of background rate and observation duration as before, the background
rate factor increase for which removing the flare increases the signal-to-noise from 2 to 3.Right: The associated
source counts for the figure on the left. Black lines assume the flare covers 10% of the observation time, dark grey
20%, and light gray 50%.

We see that in the limiting case ofB � S andSN nf = SN f we again recoverR = 1 + F−1 (i.e.,
removingR ≤ 2 never leads to any improvement).

An interesting case arises when we ask what amplitude flare weneed to remove to go from signal-to-
noise of 2 to 3 (i.e., getting a source to meet something akin to the catalog criterion). Looking at Fig. 3, we
see that for source radii<∼ 0.2 arcmin, the required flare rate increase factor is enormously large. We see
that flares really have to be greater than a factor of 10 or more.

Given the above caveats, there are cases where the background rate can increase by factors as large as
50 (namely ObsID 1712). Below are the specifications for background flare removal that I have tested. Note
that the first steps follow the current concepts for removingpoint sources as part of creating the background
map for wavdetect. It is probably reasonable to fold these procedures in with the background creation
process. They could be run independently, however, as a precursor to the wavdetect background creation
step.

1. Begin with the filtered events (i.e., bad pixels, afterglows, bad grades, etc., removed). Rotate the sky
coordinates so that the readout streaks are aligned along one sky coordinate, and the chip readout
edge is aligned along the other sky coordinate. Only consider sky coordinates that do not dither off
of the chip edge. (I chose a simple cut of removing 30 pixels from both ends of the new sky x and y
coordinates.)

2. For each chip, histogram the data to a one dimensional gridaligned with the chip readout edge. I
chose 8 pixel bins along this direction.

3. For each chip, determine the median of the histogram values, and then the median plus one sigma
(i.e., the square root of the median bin). Save the histogramreverse indices (i.e., the indices of the
events in each histogram bin) for the events in bins that are less than the median plus one sigma.

4. For each chip, find the event times and energies associatedwith the above reverse indices. For events
with energies≥ 0.2 keV and≤ 7 keV (i.e., the full band used in the source detect algorithm), run the
event times through the Gregory-Loredo algorithm and create an output lightcurve.
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Figure 4: Results of the flare removal procedure for CCD 7 on ObsID 1712.The black line is the Gregory-Loredo
lightcurve (presented as a ratio to the minimum value), while the red is the lightcurve that passes the filter threshold.
For this case, the flare ratio threshold was 5, which is probably too low for catalog purposes.

• Note that I have tweaked the Gregory-Loredo defaults slightly to favor more subdivisions in
the lightcurve, not fewer. (Specifically, we keep up to the maximum bin where the odds ratio is
≤ the peak odds divided byexp(1), rather than divided byexp(0.5). We can play with this level
somewhat.) Furthermore, the output lightcurve is set to be evenly binned in time with 50 second bins
– independent of how many subdivisions the Gregory-Loredo algorithm divides the lightcurve into.
We can vary this 50 sec number a little, but the goal is to get anoutput lightcurve that when we later
search for good time intervals based on its relative amplitude we don’t create time intervals that are
too coarsely defined.

5. For each chip, find the times when the ratio of the Gregory-Loredo lightcurve rate to its minimum
value exceeds a given threshold, and exclude those times from further catalog analysis. Merge these
new good time intervals with the existing GTI, and continue processing. (At this point is probably
where one would begin to create the background maps for wavdetect.)

• I am still debating what this threshold value should be. I would suggest we try runs on a set of
ObsIDs with values of 10 and∞ (i.e., don’t run the algorithm) and see what differences result.

Below is myS-lang code for implementing the above procedures. A copy can be found at:/pool14/mnowak/flare.s
An example of the results are shown in Fig. 4. Note that the Gregory-Loredo code below is nearly iden-
tical to my previous version, with the exception that one bughas been fixed (one that only showed up for
weakly varying sources) and that it’s output lightcurve nowhas a fixed number of bins, regardless of what
the variability algorithm finds.

% Background Flare Removal
% Mike Nowak, mnowak@space.mit.edu, October 21, 2007
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%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Gregory-Loredo Part %%

%%%%%%%%%%%%%%%%%%%%%%%%%%

require("gsl");

% The GSL lngamma function is pretty fast, but tabulating lng amma
% is slightly faster, especially for multiple runs

#ifnexists fst_lngamma
private variable log_sum = Double_Type[320001];
log_sum[[0,1]] = [0.,0.];

variable i;
for(i=2; i<=320000; i++)
{

log_sum[i] = log_sum[i-1] + log(i);
}

public define fst_lngamma(i)
{

return log_sum[int(i-1)];
}

#endif

% t = event times; tmin & tmax = max & min time of lightcurve,
% mmax = maximum partition number in trial lightcurves
% ta, adt = effective area/deadtime times and values
% dodither = Toggle for applying dither correction to lightc urve
% thresh = helps determine truncation of partitioned lightc urve
% mbin = number of bins in output lightcurve (differs from
% previous version in that this is now a *fixed* number,
% rather than a multiplier of the GL output lightcurve)

define log_odds(t,tmin,tmax,mmax,thresh,dodither,ta, adt,mbin)
{

if(dodither !=0)
{

variable inz = where(adt>0);
variable adt_use = [inz[0]:inz[length(inz)-1]];

ta = ta[adt_use];
adt = adt[adt_use];

variable na = length(adt);
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if(tmin < ta[0]){ tmin = ta[0]; }
if(tmax > ta[na-1]){ tmax = ta[na-1]; }

}

% Only look at times within tmin & tmax

t = t[where(t>=tmin and t<tmax)];

variable j;
variable n=length(t);
variable dt_int = tmax - tmin;
variable a_avg=0.;

if(dodither !=0)
{

% Define the spline of the effective area curve

variable spline_adt = interp_akima_init(ta,adt);
a_avg = log(interp_eval_integ(spline_adt,tmin,tmax)/d t_int);

% Do integration of spline in neighboring points, then sum

variable iadt = Double_Type[na];
_for j (1,na-1,1)
{

iadt[j] = interp_eval_integ(spline_adt,ta[j-1],ta[j]) ;
}
iadt=cumsum(iadt);

% Define the spline of the integrated effective area curve

variable spline_iadt = interp_akima_init(ta,iadt);
}

variable nj = Array_Type[int(mmax)-1];
variable aj = @nj;
variable m=[2:int(mmax):1];
variable lods=Double_Type[int(mmax)-1];

variable lo,hi,im;

_for im (2,int(mmax),1)
{

% Create grid for partitioning lightcurve into im bins

lo = [0:im-1];
hi = [1:im];
lo = __tmp(lo)*(dt_int/im)+tmin;
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hi = __tmp(hi)*(dt_int/im)+tmin;

if(dodither != 0 )
{

% For each partitioning, create average deadtime/effectiv e
% area per bin. Dead bins are set equal to the average
% effective area, so as not to contribute to the sum

aj[im-2] = (interp_eval(spline_iadt,hi)
-interp_eval(spline_iadt,lo))*(im/dt_int);

aj[im-2][where(aj[im-2]==0.)] = exp(a_avg);
}
else
{

aj[im-2] = Double_Type[im]+1;
}

% For each lightcurve partition, the arrays of counts per bin

nj[im-2] = histogram(t,lo,hi);

% The odds ratio for each partitioning. The nj[im-2]*()
% term is removed if effective area variation is unimportant

if(dodither != 0 )
{

lods[im-2] = sum( nj[im-2]*(a_avg-log(aj[im-2])) +
fst_lngamma(nj[im-2]+1) ) +

n*log(im) + fst_lngamma(im) - fst_lngamma(n+im);
}
else
{

lods[im-2] = sum( fst_lngamma(nj[im-2]+1) ) +
n*log(im) + fst_lngamma(im) - fst_lngamma(n+im);

}
}

% This bit uses the return pieces from above to find what the
% maximum odds ratio is, and temporarily takes that out (loma x -
% a replacement for Arnold’s bias parameter), and then like
% Arnold’s code, truncates the number of lightcurve binning s kept

variable iw = where(lods==max(lods));
variable lomax = lods[min(iw)];

lods = exp(lods-lomax);
variable csum = cumsum(lods)/(m-1);
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% Truncate the number of partitionings of the lightcurve

if(thresh < 0) thresh==0.;
variable imax = max(where(csum >= max(csum)/exp(thresh)) );
iw = where(lods[[0:imax]]==max(lods[[0:imax]]));

% Return the probability (p), the odds ratio for each partion ing
% (oratio), the log of the summed odds (lodds_sum), the # of
% partitions for the peak odds ratio (mpeak), the # of partiti ons
% for each (m), the histogrammed counts for each partitionin g (nj),
% the integrated and averaged effective area for each partio ning
%(aj, a_avg), and the used min/max times (tmin/tmax)

variable gl_struct=
struct{p, oratio, lodds_sum, mpeak, mmax, m, nj,

aj, a_avg, tmin, tmax, tlc, rate, erate};

% The # of partitions of the lightcurve with the highest odds r atio.

gl_struct.mpeak = min(iw)+2;

% Calculate the total probability of variability (p) and the odds
% ratio for each partitioning of the lightcurve (oratio).

variable msum = csum[imax];
variable lsum = log(msum) + lomax;
gl_struct.p = 1/(exp(-lsum)+1);
gl_struct.oratio = __tmp(lods)[[0:imax]]/

((imax+1)*(msum+exp(-lomax)));

% The rest of the return values

gl_struct.lodds_sum = lsum;
gl_struct.mmax = imax+2;
gl_struct.m = __tmp(m);
gl_struct.nj = __tmp(nj);
gl_struct.aj = __tmp(aj);
gl_struct.a_avg = exp(a_avg);
gl_struct.tmin = tmin;
gl_struct.tmax = tmax;

% This is the bit that differs slightly from the previous
% version. It has a fixed number of output lightcurve
% bins, rather than a multiplier X mmax.

mbin = int(mbin);
if(mbin !=0)
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{
variable tfrac = [0:mbin-1]/(mbin*1.);
variable rate = Double_Type[mbin];
variable erate=@rate;

% We might not have used all the data ...

variable ntot=sum(gl_struct.nj[0]);

variable nj_ii_k, oratio_ii, aj_ii_k, drate;

% Best estimate of the lightcurve is calculated here.
% Fractional area/deadtime correction is included.

variable ii;
_for ii (0,imax,1)
{

variable mloop=ii+2;
variable k = int( tfrac*mloop );

nj_ii_k=gl_struct.nj[ii][k];
oratio_ii=gl_struct.oratio[ii];
aj_ii_k = gl_struct.aj[ii][k];
drate = (mloop/(ntot+mloop))*

(__tmp(oratio_ii)*(nj_ii_k+1)/aj_ii_k);
rate = __tmp(rate) + drate;
erate = __tmp(erate) + (mloop/(ntot+mloop+1))*

(__tmp(drate)*(__tmp(nj_ii_k)+2)/__tmp(aj_ii_k));
}

% Here I differ from Gregory&Loredo and Arnold. G-L only incl ude
% the variable part of the lightcurve (i.e., partitionings w ith
% >=2 bins), reasonable for p˜1. L3 goes down to p˜0.6, theref ore
% the estimated constant lightcurve part should be included .

rate = __tmp(rate) + (1.-gl_struct.p)/gl_struct.a_avg;
erate = __tmp(erate) + (1.-gl_struct.p)/gl_struct.a_avg ˆ2;
erate = sqrt(__tmp(erate)-rateˆ2);

gl_struct.tlc = __tmp(tfrac)*(tmax-tmin)+tmin;
gl_struct.rate =

__tmp(rate)*(ntot/(tmax-tmin));
gl_struct.erate =

__tmp(erate)*(ntot/(tmax-tmin));
}

return gl_struct;
}
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Background Flare Part %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

variable t,ccd,nd,cx,en, sx, sy;

define rotate(x,y,t)
{

variable x1, y1;
x1 = cos(t)*x - sin(t)*y;
y1 = sin(t)*x + cos(t)*y;
return (x1,y1);

}

% Read in sky coordinates (& roll angle, so we can rotate to
% be along the readout direction), ccd ID, times, & energy.
% We will be doing GTI separate for each CCD, and be doing
% and energy cut.

variable file = "../1712/primary/acisf01712N003_evt2.f its.gz";

%variable file = "../869/primary/acisf00869N003_evt2.f its.gz";

%variable file = "../635/primary/acisf00635N003_evt2.f its.gz";

(t,ccd,en,sx,sy) =
fits_read_col(file,

"TIME","CCD_ID","ENERGY","X","Y");

variable theta = fits_read_key(file,"roll_nom");

variable ccd_on = Integer_Type[0];
variable iccd = Array_Type[10];
variable t_ccd = Array_Type[10];
variable en_ccd = Array_Type[10];
variable sx_ccd = Array_Type[10];
variable sy_ccd = Array_Type[10];
variable rx_ccd = Array_Type[10];
variable ry_ccd = Array_Type[10];
variable nx_ccd = Array_Type[10];
variable mn = Double_Type[10];
variable mm = Double_Type[10];
variable md = Double_Type[10];
variable rev_ccd;
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variable nx_filt;
variable sig_crit=1.;
variable gl = Struct_Type[10];
variable ecut, elow=200.,ehigh=7000.;
variable tbin=50.;
variable gti_start_ccd = Array_Type[10];
variable gti_stop_ccd = Array_Type[10];
variable ngti_start_ccd = Array_Type[10];
variable ngti_stop_ccd = Array_Type[10];
variable rthresh=5.;
variable iw = Array_Type[10];

% Find out which CCD’s are on, and get a baseline GTI

variable i;
foreach i ([0:9])
{

iccd[i] = where(ccd==i);
if(length(iccd[i])>0)
{

ccd_on = [ccd_on,i];
(gti_start_ccd[i],gti_stop_ccd[i]) =

fits_read_col(file+"[GTI"+string(i)+"]","START","ST OP");
}

}

variable ic,iy,in;

% Only keep x-coordinates that don’t dither off the chips,
% and bin by a factor of 8

variable lox = [30:1014:8];
variable hix = lox+8;

foreach ic (ccd_on)
{

sx_ccd[ic] = sx[iccd[ic]];
sy_ccd[ic] = sy[iccd[ic]];

% Rotate the sky coordinates to be along the readout

if(ic>3)
{

(rx_ccd[ic],ry_ccd[ic]) =
rotate(sx_ccd[ic],sy_ccd[ic],theta*PI/180);

rx_ccd[ic] = rx_ccd[ic]- min(rx_ccd[ic]);
ry_ccd[ic] = ry_ccd[ic]- min(ry_ccd[ic]);

}
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else if(ic == 0 or ic ==2)
{

(rx_ccd[ic],ry_ccd[ic]) =
rotate(sx_ccd[ic],sy_ccd[ic],theta*PI/180+PI/2);

rx_ccd[ic] = rx_ccd[ic]- min(rx_ccd[ic]);
ry_ccd[ic] = ry_ccd[ic]- min(ry_ccd[ic]);

}
else if(ic == 1 or ic==3)
{

(rx_ccd[ic],ry_ccd[ic]) =
rotate(sx_ccd[ic],sy_ccd[ic],theta*PI/180-PI/2);

rx_ccd[ic] = rx_ccd[ic]- min(rx_ccd[ic]);
ry_ccd[ic] = ry_ccd[ic]- min(ry_ccd[ic]);

}

% Throw out y-coordinates that dither off the chips

iy = where(ry_ccd[ic] >=30 and ry_ccd[ic] <= max(ry_ccd[ic ])-30);

t_ccd[ic] = t[iccd[ic]][iy];
en_ccd[ic] = en[iccd[ic]][iy];
sx_ccd[ic] = sx_ccd[ic][iy];
sy_ccd[ic] = sy_ccd[ic][iy];
rx_ccd[ic] = rx_ccd[ic][iy];
ry_ccd[ic] = ry_ccd[ic][iy];

% Histogram perpendicular to the readout direction, and
% save the reverse indices of what went into the bins.

nx_ccd[ic] = histogram(rx_ccd[ic],lox,hix,&rev_ccd);

% At first I wasn’t sure whether we’d be basing the cut
% on the minimum, the mean, or the median. Median seems
% to be the best, but we can change that.

mm[ic] = min(nx_ccd[ic]);
mn[ic] = mean(nx_ccd[ic]);
md[ic] = median(nx_ccd[ic]);

% Only keep columns that are within sig_crit of the median.
% Since we aren’t using this for background modeling in
% wavdetect, and are only going to go with GTI times, we
% can be a little more fussy with this criterion and
% (for now) throw out more data by taking sig_crit = 1 sigma

nx_filt = where(nx_ccd[ic] < md[ic]+sig_crit*sqrt(md[ic ]));

% These are all the "source free" events.
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variable bkg_inx = Long_Type[0];
foreach in (nx_filt)
{

bkg_inx = [bkg_inx,rev_ccd[in]];
}

% Get filtered times, energies. Coordinates are just
% for checking purposes/

t_ccd[ic] = t_ccd[ic][bkg_inx];
en_ccd[ic] = en_ccd[ic][bkg_inx];
sx_ccd[ic] = sx_ccd[ic][bkg_inx];
sy_ccd[ic] = sy_ccd[ic][bkg_inx];
rx_ccd[ic] = rx_ccd[ic][bkg_inx];
ry_ccd[ic] = ry_ccd[ic][bkg_inx];

% For the Gregory-Loredo lightcurve, put in the GTI
% limits as the bounds of the lightcurve

variable min_t = min(gti_start_ccd[ic]);
variable max_t = max(gti_stop_ccd[ic]);

% We only want to worry about flares that affect our
% science, so I am choosing the 0.2-7 keV detection
% band. In principle, we could do this for each energy
% band of interest, and then take intersections. I don’t
% want to get that fussy at this point.

ecut = where(en_ccd[ic] >= elow and en_ccd[ic] <= ehigh);

% Calculate a Gregory-Loredo lightcurve with bins of length
% tbin. Note also the 5th input parameter is 1 (rather than
% the usual 0.5 default A. Rots has been using) - it’s to get
% a slightly more finely varying lightcuve (i.e., less block y).
% That’s a parameter to play with some more for these purposes .

% If there are no gaps in the GTI, do the faster Gregory-Loredo
% without an effective area correction.

if(length(gti_start_ccd[ic]) < 2)
{

gl[ic] = log_odds(t_ccd[ic][ecut],min_t,max_t,
(max_t-min_t)/tbin,1,0,,,(max_t-min_t)/tbin);

}
else
{
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% If there are gaps in the GTI, put that into a
% normalized effective area curve, and feed that
% to the Gregory-Loredo algorithm

variable tadd, tadt = Double_Type[0];
variable adt = Double_Type[0];
i=0;
foreach i ([0:length(gti_start_ccd[ic])-2])
{

tadd=[gti_start_ccd[ic][i]:
gti_stop_ccd[ic][i]-0.1:1.];

tadt = [tadt,tadd,gti_stop_ccd[ic][i],
gti_start_ccd[ic][i+1]-0.1];

adt = [adt,ones(length(tadd)),0.,0.];
}
i++;
tadd=[gti_start_ccd[ic][i]:gti_stop_ccd[ic][i]:1.];
tadt = [tadt,tadd];
adt = [adt,ones(length(tadd))];

gl[ic] = log_odds(t_ccd[ic][ecut],min_t,max_t,
(max_t-min_t)/tbin,1,1,tadt,adt,(max_t-min_t)/tbin) ;

}

% Flag times that exceed the threshold, rthresh. This number
% *must* be greater than 2, and probably should be placed in th e
% 4-5 range. That’s something that we should probably play
% with during the testing and characterization stage.

variable igti = where(gl[ic].rate/min(gl[ic].rate) > rth resh);
variable ligti = length(igti);

% Create the GTI’s for the times that we are keeping.

if(ligti > 0)
{

variable gdiff = where( igti - shift(igti,-1) > 1 or
igti - shift(igti,-1) <= 0 );

variable lgdiff = length(gdiff);

ngti_start_ccd[ic] = [gti_start_ccd[ic][0]];
ngti_stop_ccd[ic] = [gl[ic].tlc[igti[gdiff[0]]]];

i=1;
loop(lgdiff-1)
{

ngti_start_ccd[ic] = [ngti_start_ccd[ic],
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gl[ic].tlc[igti[gdiff[i]-1]+1]];
ngti_stop_ccd[ic] = [ngti_stop_ccd[ic],

gl[ic].tlc[igti[gdiff[i]]]];
i++;

}

if( igti[ligti-1] < length(gl[ic].tlc)-1 )
{

ngti_start_ccd[ic] = [ngti_start_ccd[ic],
gl[ic].tlc[igti[ligti-1]+1]];

ngti_stop_ccd[ic] = [ngti_stop_ccd[ic],
max(gti_stop_ccd[ic])];

}
}
else
{

ngti_start_ccd[ic] = [min(gti_start_ccd[ic])];
ngti_stop_ccd[ic] = [min(gti_stop_ccd[ic])];

}

% These are the indices that we’ve kept - for testing purposes .

iw[ic] = Long_Type[0];
foreach i ([0:length(ngti_stop_ccd[ic])-1])
{

iw[ic] = [iw[ic],where(gl[ic].tlc >= ngti_start_ccd[ic] [i] and
gl[ic].tlc < ngti_stop_ccd[ic][i])];

}
}
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