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1. Introduction

Given several observations of a source, it is useful to combine them to derive an optimal

estimate of the source’s intrinsic angular size. Each observed source image is distorted by a number

of effects including the telescope’s point-spread function (PSF), detector pixelation, the presence of

bad pixels and errors in aspect reconstruction. PSF distortion is often the most important of these

effects. Unfortunately, PSF deconvolution is rarely practical because neither the source spectrum

nor the PSF is accurately known and because the available data typically have a low signal-to-noise

ratio. This memo describes an alternate approach that relies on an approximate measure of the

intrinsic source angular size.

2. Approximate Correction for PSF Distortion

Using a telescope with PSF, p(x, y), to observe a source, s(x, y), one obtains a source image,

c(x, y), which is the convolution of the source and the PSF,

c(x, y) =

∫∫

s(x′, y′) p(x− x′, y − y′) dx′dy′. (1)

The goal is then to remove the effects of the PSF to better constrain the intrinsic shape of the

source. To approach this problem analytically, consider the idealized case of a monochromatic

source in which both the source and the PSF are elliptical Gaussians.

An elliptical Gaussian centered on the origin, with semi-axes σ1 and σ2, has the form

g(x, y;σ1, σ2, φ) =
g0
σ1σ2

exp
[

−π(Ax)2
]

,

where

A = URφ =

(

1/σ1

1/σ2

)(

cosφ sinφ

− sinφ cosφ

)

, x =

(

x

y

)

, (2)

and φ is the clockwise angle between the positive x-axis and the ellipse major axis.

For an elliptical Gaussian source, s(x, y; a1, a2, φ), and an elliptical Gaussian PSF, p(x, y; b1, b2, ψ),

one can show [see equation (A13)] that the PSF-convolved source, c(x, y), is also an elliptical Gaus-

sian,

c(x, y;σ1, σ2, δ) =
s0p0

σ1σ2
exp

[

−π(T x)2
]

, (3)
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where

T =

(

1/σ1

1/σ2

)(

cos δ − sin δ

sin δ cos δ

)

, (4)

and where σ1, σ2 and δ are nonlinear functions of a1, a2, b1, b2, and α ≡ φ− ψ. In general, δ 6= φ;

the PSF-convolved ellipse need not have the same orientation as the intrinsic source ellipse.

In principle, one can determine the parameters of the intrinsic source ellipse, {a1, a2, φ}, by

solving a nonlinear system of equations involving the PSF parameters, {b1, b2, ψ}, and the measured

source parameters, {σ1, σ2, δ}. However, because these equations are based on a crude approxima-

tion and because the input parameters are often uncertain, such an elaborate calculation seems

unjustified.

A much simpler and more robust approach makes use of the identity

σ2
1 + σ2

2 = a2
1 + a2

2 + b21 + b22, (5)

which applies to the convolution of two elliptical Gaussians having arbitrary relative sizes and

position angles [see equation (A15)]. Using this identity, one can define a root-sum-square intrinsic

source size,

arss ≡
√

a2
1 + a2

2 =
√

max{0, (σ2
1 + σ2

2) − (b21 + b22)}, (6)

that depends only on the sizes of the relevant ellipses and is independent of their orientations.

This expression is analogous to the well-known result for convolution of 1D Gaussians and for

convolution of circular Gaussians in 2D.

Using equation (6), one can derive an analytic expression for the uncertainty in arss in terms of

the measurement errors associated with σi and bi. Because σi and bi are non-negative, evaluating

the right-hand side of equation (6) using the corresponding mean values should give a reasonable

estimate of the mean value of arss. A Taylor series expansion of the right-hand side of equation (6)

evaluated at the mean parameter values therefore yields the uncertainty

∆arss =
1

a

[

σ2
1(∆σ1)

2 + σ2
2(∆σ2)

2 + b21(∆b1)
2 + b22(∆b2)

2
]1/2

(7)

where (∆X)2 represents the variance in X and where

a ≡
{

arss, arss > 0,
√

b21 + b22, arss = 0.
(8)

Given a compatible set of measurements of intrinsic source size, {arss,i±∆arss,i}, the minimum

variance estimator of the mean source size (Davis 2007) is the variance-weighted mean,

arss = Var[arss]
∑

i

Var[arss,i]
−1arss,i, (9)

where Var[arss,i] = (∆arss,i)
2. The variance in arss is

Var[arss] =

[

∑

i

Var[arss,i]
−1

]

−1

. (10)
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Equations (6) and (7) yield an estimate of the intrinsic source size, arss ± ∆arss, projected

onto the tangent plane of an observation. For this measurement, the orientation of the source

and PSF ellipses is irrelevant. As long as the angular size of the source is small enough that the

small angle approximation is valid, the tangent plane estimate of the source size should differ by a

negligible amount from the corresponding arc length on the celestial sphere (Davis 2007). For this

reason, there is no need to transform the individual source size measurements, arss,i, to a common

coordinate system before computing the variance-weighted mean in equation (9).

In my opinion, for reasons outlined above, derivation of the full set PSF-corrected ellipse

parameters is unjustified in the context of level 3 archive processing. But, for completeness, I will

describe one method of doing so.

To derive the parameters of the mean PSF-corrected source ellipse, {x0, y0, a1, a2, φ}, the

parameters of the individual PSF-corrected ellipses must first be specified in a common coordinate

system. A common coordinate system is important because the angle between an ellipse major

axis and the local line of declination through the center of the ellipse is a strong function of the

(α, δ) coordinates of the ellipse, particularly when the ellipse is located near the celestial poles. To

determine the full set of PSF-corrected ellipse parameters for a given source observation, solve the

nonlinear system of equations (A11), (A12) and (A14) for {a1, a2, φ}, using the available values of

{σ1, σ2, δ, b1, b2, ψ}. The PSF-corrected ellipse parameters can then be transformed to a common

coordinate system such as the (x, y) coordinates in the plane tangent at the mean source position,

or the (α, δ) coordinates on the celestial sphere (for details, see Davis (2007)).

Next, express the individual PSF-corrected ellipses as polynomials of the form

1 = [A(x − x0)]2 = c0x
2 + c1y

2 + c2xy + c3x+ c4y + c5, (11)

where x0 is the ellipse center and A is defined in equation (2). The polynomial coefficients of the

mean ellipse, ck, may now be obtained from a weighted sum

ck =

N
∑

i=1

wick,i (12)

where the ck,i are the polynomial coefficients of the individual ellipses. The parameters of the mean

PSF-corrected ellipse, {x0, y0, a1, a2, φ}, may be derived from the mean polynomial coefficients, ck,

by solving a nonlinear system of 5 equations in 5 unknowns.
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Fig. 1.— Distribution of variance-weighted mean intrinsic source size estimates. A dashed blue line

indicates the known intrinsic size (σ0) of each simulated circular Gaussian source. For each source

size, a black (orange) histogram shows the distribution of size estimates derived using random

samples of N = 5 (N = 20) sources. For each histogram, the median value of arss/
√

2 is plotted

with an error bar indicating the median value of ±∆arss/
√

2. The corresponding numerical values

are given in Table 1.

Table 1. Median Source Size Errors1

N=5 N=20

σ0 arss/
√

2 ∆arss/
√

2 arss/
√

2 − σ0 arss/
√

2 ∆arss/
√

2 arss/
√

2 − σ0

1 0.91 0.08 -0.09 0.92 0.04 -0.08

2 1.89 0.13 -0.11 1.90 0.06 -0.10

3 2.83 0.16 -0.17 2.84 0.08 -0.16

4 3.78 0.18 -0.22 3.79 0.09 -0.21

5 4.81 0.18 -0.19 4.81 0.09 -0.19

6 5.79 0.20 -0.21 5.80 0.10 -0.20

7 6.88 0.19 -0.12 6.88 0.10 -0.12

8 7.91 0.21 -0.09 7.90 0.10 -0.10

1All values are given in arcsec.
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3. Testing

I tested the above procedure for determining arss using a set of 28 MARX simulations originally

produced to test the Mexican Hat Optimization (MHO) algorithm (Houck 2007). Each simulation

contains a test pattern of circular Gaussian sources with intrinsic sizes σ0 = 1 − 8 arcsec. Each

test pattern fills the ACIS-I detector array. Five different exposure times are included, sampling

a moderate range in source signal to noise ratio.

Using this test data, I performed two sets of Monte Carlo trials. For each input source size,

σ0, a sample of N sources were chosen at random. These randomly selected sources might have

any of five different exposure times and might fall anywhere in the ACIS-I field of view. Their

source ellipse parameters (σ1, σ2) were determined using the MHO algorithm. The corresponding

PSF ellipse parameters (b1, b2) were obtained from the parameterization of Allen, Jerius & Gaetz

(2004). For the each sample of N measurements, a mean intrinsic source size, arss ± ∆arss, was

estimated using equations (9) and (10), assuming a 10% uncertainty in the PSF size. This process

was repeated 104 times for N = 5 and for N = 20. The results are summarized in Figure 1 and

Table 1.

As expected, increasing the sample size by a factor of four reduces the statistical error (∆arss)

by about a factor of two. The systematic error in the estimated intrinsic source size (arss/
√

2−σ0)

is dominated by the systematic error in the PSF ellipse parameters, bi. This systematic error arises

in part because the Allen, Jerius & Gaetz (2004) parameterization of the PSF is based on SAOSAC

simulations, but the simulated data was generated by MARX.

4. Recommendations

1. Use equations (6) and (7) to estimate the intrinsic size of the source, (arss,i/
√

2)±(∆arss,i/
√

2),

projected onto the tangent plane of each available observation. The factors of 1/
√

2 ensure

that, when applied to circular source images, the statistic value gives the radius of the source

image. Ideally, the PSF size, bi, should be computed using weights derived from the source

spectrum and instrument response within the current energy band.

2. Use equations (9) and (10) to derive a minimum-variance estimate of the intrinsic source size,

arss, and the corresponding uncertainty, (Var[arss])
1/2.
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A. Convolution of Two Elliptical Gaussians

In this section, I will use the convolution theorem to derive an expression for the convolution

of two elliptical Gaussians. The convolution theorem is

F [s ⋆ p] = F [s]F [p],

where F [s] denotes the Fourier transform of a function s, defined as

S(u, v) = F [s] ≡
∫

∞

−∞

∫

∞

−∞

s(x, y) e−i2π(ux+vy) dxdy.

The inverse transform is

s(x, y) = F
−1[S] ≡

∫

∞

−∞

∫

∞

−∞

S(u, v) ei2π(ux+vy) dudv.

The Fourier transform of an elliptical Gaussian with shape parameters {a1, a2, φ}, centered at

the origin, is

S(u, v) =
s0
a1a2

∫∫

exp
[

−π(Ax)2 − i2πu · x
]

dxdy, (A1)

where A is defined in equation (2). Changing variables so that x = A−1x′, we have

S(u, v) =
s0
a1a2

∫∫

exp
[

−πx′2 − i2πu · (A−1x′)
]

∣

∣

∣

∣

∂(x, y)

∂(x′, y′)

∣

∣

∣

∣

dx′ dy′. (A2)

From the definition of A,

x = A−1x′ = Rφ
−1U−1x′,

so that
(

x

y

)

=

(

cosφ − sinφ

sinφ cosφ

)(

a1

a2

)

(

x′

y′

)

=

(

x′a1 cosφ− y′a2 sinφ

x′a1 sinφ+ y′a2 cosφ

)

,

and the Jacobian determinant is
∣

∣

∣

∣

∂(x, y)

∂(x′, y′)

∣

∣

∣

∣

= a1a2.

Substituting in equation (A2) these expressions for A−1x′ and the Jacobian determinant, we have

S(u′, v′) = s0

∫

∞

−∞

exp
[

−πx′2 − i2πx′u′
]

dx′
∫

∞

−∞

exp
[

−πy′2 − i2πy′v′
]

dy′, (A3)

This preprint was prepared with the AAS LATEX macros v5.2.
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where we have defined

u′ ≡ a1(u cos φ+ v sinφ), (A4)

v′ ≡ a2(−u sinφ+ v cosφ). (A5)

Rewriting the x′ integral in equation (A3) as
∫

∞

−∞

exp
[

−πx′2 − i2πx′u′
]

dx′ = e−πu′2

∫

∞

−∞

exp
[

−π(x′ + iu′)2
]

dx′, (A6)

we can evaluate the definite integral on the right-hand side of equation (A6) by substituting t ≡
x′ + iu′, and noting that

∫

∞

−∞

e−πt2dt = 1.

It follows that

S(u′, v′) = s0e
−π(u′2+v′2),

where u′ and v′ are defined in equations (A4) and (A5).

For convenience in computing the convolution, we can choose a coordinate system so that the

major axis of the PSF ellipse lies along the x-axis. In these coordinates, the PSF Gaussian has

Fourier transform

P (u, v) = F [p] = p0 exp
[

−π(b21u
2 + b22v

2)
]

, (A7)

and the source Gaussian has Fourier transform

S(u, v) = F [s] = s0 exp
{

−π
[

a2
1(u cosα+ v sinα)2 + a2

2(−u sinα+ v cosα)2
]}

, (A8)

where α ≡ φ−ψ is the angle between the major axis of the source ellipse and the major axis of the

PSF ellipse. Applying the convolution theorem, the PSF-convolved source is c(x, y) ≡ s ⋆ p, which

can now be written in the form

c(x, y) = F
−1[S(u, v)P (u, v)] =

∫

∞

−∞

∫

∞

−∞

S(u, v)P (u, v) ei2π(ux+vy) dudv. (A9)

Substituting equations (A7) and (A8) into equation (A9), we obtain

c(x, y) = s0p0

∫∫

exp
{

−π
[

Au2 +Buv +Cv2
]

+ i2π(ux+ vy)
}

dudv.

where

A ≡ a2
1 + b21 cos2 α+ b22 sin2 α,

C ≡ a2
2 + b21 sin2 α+ b22 cos2 α,

B ≡ 2 (b21 − b22) sinα cosα.

If α = nπ/2 or if b1 = b2, then B = 0 and the uv cross-term vanishes. In the general case, for

b1 6= b2, the cross-term can be eliminated by introducing a coordinate rotation. To eliminate the

cross-term, introduce new coordinates, u = Rδu
′, defined by

(

u

v

)

=

(

cos δ sin δ

− sin δ cos δ

)

(

u′

v′

)

,
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and then choose the rotation angle δ so that the new u′v′ cross-term vanishes. Working through

the algebra, it follows that the cross-term vanishes for

δ =
1

2
tan−1 B

C −A
.

In these coordinates, equation (A9) becomes

c(x, y) = s0p0

∫∫

exp
[

−πσ2
1u

′2 − πσ2
2v

′2 + i2π(Rδu
′) · x

]

du′ dv′, (A10)

where

σ2
1 ≡ A cos2 δ −B sin δ cos δ + C sin2 δ, (A11)

σ2
2 ≡ A sin2 δ +B sin δ cos δ + C cos2 δ. (A12)

Performing the integration in equation (A10) using the same techniques that were applied to

equation (A1), it follows that

c(x, y) =
s0p0

σ1σ2
exp

{

−π
[

1

σ2
1

(x cos δ − y sin δ)2 +
1

σ2
2

(x sin δ + y cos δ)2
]}

, (A13)

for the case b1 6= b2. The simpler case with b1 = b2 is left as an exercise for the reader. This result

demonstrates that the convolution of two elliptical Gaussians yields an elliptical Gaussian.

Note that δ 6= φ; in general, the PSF-convolved ellipse does not have the same orientation as

the source ellipse. Expressing δ in terms of the various ellipse parameters, we have

tan 2δ =
tan 2α

1 + ξ sec 2α
, where ξ ≡ a2

1 − a2
2

b21 − b22
. (A14)

Clearly, the orientation of the PSF-convolved ellipse differs from that of the source ellipse whenever

the source and PSF are misaligned (non-circular) ellipses.

The identity

σ2
1 + σ2

2 = a2
1 + a2

2 + b21 + b22, (A15)

follows trivially from the definition of σ2
1 and σ2

2 and is valid for the general case of the convolution

of two elliptical Gaussians with arbitrary orientation.

Other special cases follow immediately:

α = 0, π =⇒ σ2
1 = a2

1 + b21, σ2
2 = a2

2 + b22.

α = π/2 =⇒ σ2
1 = a2

1 + b22, σ2
2 = a2

2 + b21.

b1 = b2 = b =⇒ σ2
i = a2

i + b2.


