Background marginalized X-ray source intensity

Vinay L. Kashyap
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
vkashyap@cfa.harvard.edu

Abstract

The posterior probability distribution of the source intensity is calculated for the case when imperfect apertures are used to measure counts.

Subject headings: methods: data analysis - methods: statistical

1. Introduction

2. X-ray Aperture photometry

Suppose C counts are observed in an "source" aperture of area A_{S} and B counts are observed in a "background" aperture of area A_{B}. Further suppose that the source aperture encloses a fraction f of a PSF centered in A_{S} and spills over by a fraction g over the background aperture. Note that these areas need not be circular, concentric, or even contiguous.

The observed counts are presumed to be generated via a Poisson process, i.e.,

$$
\begin{align*}
C \sim \operatorname{Pois}(\theta) & \equiv \operatorname{Pois}(f s+b) \\
B \sim \operatorname{Pois}(\phi) & \equiv \operatorname{Pois}(g s+r b) \tag{1}
\end{align*}
$$

where θ, ϕ are the Poisson intensities that lead to the observations in the source and background apertures respectively, s is the intensity of the source, and b is the intensity of the background normalized to the area of the source aperture, and $r=\frac{A_{B}}{A_{S}}$ is the ratio of the background and source apertures.

We seek to determine the posterior probability of s, marginalized over the background,

$$
\begin{equation*}
p(s \mid C B)=\int d b p(s b \mid C B) \tag{2}
\end{equation*}
$$

where the integrand on the rhs is the joint posterior probability distribution of s and b.

2.1. The Classical Case

In the high counts regime, we can approximate s and b by their MLE values, and thus write

$$
\begin{align*}
& C=f s+b \\
& B=g s+r b \tag{3}
\end{align*}
$$

which leads to the solution

$$
\begin{align*}
s & =\frac{r C-B}{r f-g} \\
b & =\frac{f B-g C}{r f-g} \tag{4}
\end{align*}
$$

with errors propagated under an assumption of Gaussian regime,

$$
\begin{align*}
\sigma^{2}(s) & =\frac{r^{2} C+B}{(r f-g)^{2}} \\
\sigma^{2}(b) & =\frac{f^{2} B+g^{2} C}{(r f-g)^{2}} \tag{5}
\end{align*}
$$

2.2. The Bayesian Calculation

First note that the variable pairs (θ, ϕ) and (s, b) are linear transforms of each other. Thus,

$$
\begin{align*}
p((\theta \phi \mid C B) d \theta d \phi & =p(s b \mid C B) J(\theta, \phi ; s, b) d s d b \\
& =p(s b \mid C B)\left|\frac{\partial(\theta, \phi)}{\partial(s, b)}\right| d s d b \\
& =p(s b \mid C B)(r f-g) d s d b \tag{6}
\end{align*}
$$

Now, the joint posterior probability density $p(\theta \phi \mid C B)$ can be written out using Bayes' Theorem as

$$
\begin{align*}
p(\theta \phi \mid C B) & =\frac{p(\theta) p(\phi) p(C \mid \theta \phi) p(B \mid \theta \phi)}{p(C B)} \\
& \equiv \frac{p(\theta) p(\phi) p(C \mid \theta) p(B \mid \phi)}{p(C B)} \tag{7}
\end{align*}
$$

where the likelihoods are simplified because C and B are independent measurements; $p(\theta)$ and $p(\phi)$ are priors on the Poisson intensity in the source and background aperture, and we use γ-functions for them,

$$
\begin{align*}
& p(\theta)=\frac{\beta_{S}{ }^{\alpha_{S}} \theta^{\alpha_{S}-1} e^{-\beta_{S} \theta}}{\Gamma\left(\alpha_{S}\right)}, \tag{8}\\
& p(\phi)=\frac{\beta_{B}{ }^{\alpha_{B}} \phi^{\alpha_{B}-1} e^{-\beta_{B} \phi}}{\Gamma\left(\alpha_{B}\right)}, \tag{9}
\end{align*}
$$

where $\alpha_{S}, \alpha_{B}, \beta_{S}, \beta_{B}$ are parameters that define the shape of the functions. For non-informative priors, a typical choice is $\alpha_{S}=\alpha_{B}=1$ and $\beta_{S}=\beta_{B}=0$, representing the information encoded in an observation of 0 counts obtained over 0 area. ${ }^{1}$ For the sake of simplicity, we require that α_{S}, α_{B} be integers. This is not restrictive, because priors can always be set in terms of expected counts ($\alpha_{S}, \alpha_{B}=$ expected counts +1).

The likelihoods are

$$
\begin{align*}
p(C \mid \theta) & =\frac{\theta^{C} e^{-\theta}}{\Gamma(C+1)} \tag{10}\\
p(B \mid \phi) & =\frac{\phi^{B} e^{-\phi}}{\Gamma(B+1)} \tag{11}
\end{align*}
$$

[^0]The joint posterior (Equation 7) can then be written as

$$
\begin{align*}
p(\theta \phi \mid C B)= & \theta^{C+\alpha_{S}-1} \phi^{B+\alpha_{B}-1} e^{-\theta\left(1+\beta_{S}\right)-\phi\left(1+\beta_{B}\right)} \times \\
& \frac{1}{p(C B)} \frac{\beta_{S}^{\alpha_{S}} \beta_{B}^{\alpha_{B}}}{\Gamma\left(\alpha_{S}\right) \Gamma\left(\alpha_{B}\right) \Gamma(C+1) \Gamma(B+1)}, \tag{13}
\end{align*}
$$

where the normalization factor $p(C B)$ is determined by requiring that

$$
\begin{equation*}
\int_{0}^{\infty} d \theta \int_{0}^{\infty} d \phi p(\theta \phi \mid C B)=1 \tag{14}
\end{equation*}
$$

Considering that

$$
\begin{equation*}
\int_{0}^{\infty} d x x^{A-1} e^{-x B}=\frac{\Gamma(A)}{B^{A}} \tag{15}
\end{equation*}
$$

we have

$$
\begin{align*}
\int_{0}^{\infty} d \theta \theta^{C+\alpha_{S}-1} e^{-\theta\left(1+\beta_{S}\right)} & =\frac{\Gamma\left(C+\alpha_{S}\right)}{\left(1+\beta_{S}\right)^{C+\alpha_{S}}}, \quad \text { and } \tag{16}\\
\int_{0}^{\infty} d \phi \phi^{B+\alpha_{B}-1} e^{-\phi\left(1+\beta_{B}\right)} & =\frac{\Gamma\left(B+\alpha_{B}\right)}{\left(1+\beta_{B}\right)^{B+\alpha_{B}}} \tag{17}
\end{align*}
$$

Therefore, by Equations 13 and 14,

$$
\begin{equation*}
p(C B)=\frac{\Gamma\left(C+\alpha_{S}\right) \Gamma\left(B+\alpha_{B}\right) \beta_{S}{ }^{\alpha_{S}} \beta_{B}^{\alpha_{B}}}{\Gamma\left(\alpha_{S}\right) \Gamma\left(\alpha_{B}\right) \Gamma(C+1) \Gamma(B+1)\left(1+\beta_{S}\right)^{C+\alpha_{S}}\left(1+\beta_{B}\right)^{B+\alpha_{B}}} . \tag{18}
\end{equation*}
$$

(Note that for $\alpha_{S}=\alpha_{B}=1$ and $\beta_{S}=\beta_{B}=0$, the determinate portion of the above expression reduces to $p(C B)=1$.) With this normalization, Equation 13 reduces to

$$
\begin{equation*}
p(\theta \phi \mid C B)=\frac{\left(1+\beta_{S}\right)^{C+\alpha_{S}}\left(1+\beta_{B}\right)^{B+\alpha_{B}}}{\Gamma\left(C+\alpha_{S}\right) \Gamma\left(B+\alpha_{B}\right)} \theta^{C+\alpha_{S}-1} \phi^{B+\alpha_{B}-1} e^{-\theta\left(1+\beta_{S}\right)-\phi\left(1+\beta_{B}\right)} \tag{19}
\end{equation*}
$$

We change variables from $\theta, \phi \rightarrow s, b$ (see Equation 6) and write

$$
\begin{align*}
p(\theta \phi) d \theta d \phi= & (r f-g) p(\theta(s, b) \phi(s, b) \mid C B) d s d b \\
= & d s d b(r f-g) \frac{\left(1+\beta_{S}\right)^{C+\alpha_{S}}\left(1+\beta_{B}\right)^{B+\alpha_{B}}}{\Gamma\left(C+\alpha_{S}\right) \Gamma\left(B+\alpha_{B}\right)} \times \\
& (f s+b)^{C+\alpha_{S}-1}(g s+r b)^{B+\alpha_{B}-1} e^{-(f s+b)\left(1+\beta_{S}\right)-(g s+r b)\left(1+\beta_{B}\right)} \\
= & d s d b(r f-g) \frac{\left(1+\beta_{S}\right)^{C+\alpha_{S}}\left(1+\beta_{B}\right)^{B+\alpha_{B}}}{\Gamma\left(C+\alpha_{S}\right) \Gamma\left(B+\alpha_{B}\right)} \times \\
& (f s+b)^{C+\alpha_{S}-1}(g s+r b)^{B+\alpha_{B}-1} e^{-s\left(f+g+f \beta_{S}+g \beta_{B}\right)} e^{-b\left(1+r+\beta_{S}+r \beta_{B}\right)} . \tag{20}
\end{align*}
$$

Thus, the posterior probability of the source intensity,

$$
\begin{align*}
p(s \mid C B) d s= & d s \int_{0}^{\infty} d b p(s b \mid C B) \\
\equiv & d s(r f-g) \frac{\left(1+\beta_{S}\right)^{C+\alpha_{S}}\left(1+\beta_{B}\right)^{B+\alpha_{B}}}{\Gamma\left(C+\alpha_{S}\right) \Gamma\left(B+\alpha_{B}\right)} \times e^{-s\left(f+g+f \beta_{S}+g \beta_{B}\right)} \\
& \int_{0}^{\infty} d b(f s+b)^{C+\alpha_{S}-1}(g s+r b)^{B+\alpha_{B}-1} e^{-b\left(1+r+\beta_{S}+r \beta_{B}\right)} \tag{21}
\end{align*}
$$

Now, we can write

$$
(x+y)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} x^{k} y^{n-k}=\sum_{k=0}^{n} \frac{\Gamma(n+1)}{\Gamma(k+1) \Gamma(n-k+1)} x^{k} y^{n-k}
$$

and thus expanding the factors within the integrand with $C+\alpha_{S}-1=N$ and $B+\alpha_{B}-1=M$ (this is where it is necessary to assume that α_{S} and α_{B} are integers),

$$
\begin{align*}
(f s+b)^{C+\alpha_{S}-1} & =(f s+b)^{N} \\
& =\sum_{k=0}^{N} f^{k} \frac{\Gamma(N+1)}{\Gamma(k+1) \Gamma(N-k+1)} s^{k} b^{N-k} \tag{22}\\
(g s+r b)^{B+\alpha_{B}-1} & =(g s+r b)^{M} \\
& =\sum_{j=0}^{M} g^{j} r^{M-j} \frac{\Gamma(M+1)}{\Gamma(j+1) \Gamma(M-j+1)} s^{j} b^{M-j} \tag{23}
\end{align*}
$$

Thus, the integrand in Equation 21 can be written as

$$
\begin{align*}
& \int_{0}^{\infty} d b(f s+b)^{C+\alpha_{S}-1}(g s+r b)^{B+\alpha_{B}-1} e^{-b\left(1+r+\beta_{S}+r \beta_{B}\right)} \\
= & \sum_{k=0}^{N} \sum_{j=0}^{M} f^{k} g^{j} r^{M-j} s^{k+j} \frac{\Gamma(N+1) \Gamma(M+1)}{\Gamma(k+1) \Gamma(N-k+1) \Gamma(j+1) \Gamma(M-j+1)} \times \\
& \int_{0}^{\infty} d b b^{N+M-k-j} e^{-b\left(1+r+\beta_{S}+r \beta_{B}\right)}, \\
\equiv & \sum_{k=0}^{N} \sum_{j=0}^{M} f^{k} g^{j} r^{M-j} s^{k+j} \times \\
& \frac{\Gamma(N+1) \Gamma(M+1) \Gamma(N+M-k-j+1)}{\Gamma(k+1) \Gamma(N-k+1) \Gamma(j+1) \Gamma(M-j+1)\left(1+r+\beta_{S}+r \beta_{B}\right)^{N+M-k-j+1}} . \tag{24}
\end{align*}
$$

Putting it all together,

$$
p(s \mid C B) d s=d s \int_{0}^{\infty} d b p(s b \mid C B)
$$

$$
\begin{align*}
\equiv & d s(r f-g) \frac{\left(1+\beta_{S}\right)^{C+\alpha_{S}}\left(1+\beta_{B}\right)^{B+\alpha_{B}}}{\Gamma\left(C+\alpha_{S}\right) \Gamma\left(B+\alpha_{B}\right)} \times \\
& \sum_{k=0}^{N} \sum_{j=0}^{M}\left(f^{k} g^{j} r^{M-j} s^{k+j} e^{-s\left(f+g+f \beta_{S}+g \beta_{B}\right)} \times\right. \\
& \left.\frac{\Gamma(N+1) \Gamma(M+1) \Gamma(N+M-k-j+1)}{\Gamma(k+1) \Gamma(N-k+1) \Gamma(j+1) \Gamma(M-j+1)\left(1+r+\beta_{S}+r \beta_{B}\right)^{N+M-k-j+1}}\right) . \tag{25}
\end{align*}
$$

For the non-informative priors, $\alpha_{S}, \alpha_{B}=1$ and $\beta_{S}=\beta_{B}=0$,

$$
\begin{align*}
p(s \mid C B) d s= & d s(r f-g) \frac{1}{\Gamma(C+1) \Gamma(B+1)} \times \\
& \sum_{k=0}^{C} \sum_{j=0}^{B}\left(f^{k} g^{j} r^{B-j} s^{k+j} e^{-s(f+g)} \times\right. \\
& \left.\frac{\Gamma(C+1) \Gamma(B+1) \Gamma(C+B-k-j+1)}{\Gamma(k+1) \Gamma(C-k+1) \Gamma(j+1) \Gamma(B-j+1)(1+r)^{C+B-k-j+1}}\right) . \tag{26}
\end{align*}
$$

And further, when the source PSF has no overlap with the background aperture, $g=0$, and only the $j=0$ term remains from the summation,

$$
\begin{align*}
p(s \mid C B) d s= & d s \frac{1}{\Gamma(C+1) \Gamma(B+1)} \times \\
& \sum_{k=0}^{C}\left(f^{k+1} r^{B+1} s^{k} e^{-s f} \times\right. \\
& \left.\frac{\Gamma(C+1) \Gamma(B+1) \Gamma(C+B-k+1)}{\Gamma(k+1) \Gamma(C-k+1) \Gamma(B+1)(1+r)^{C+B-k+1}}\right) . \tag{27}
\end{align*}
$$

REFERENCES

Loredo, T.J. 1990, in "Maximum Entropy and Bayesian Methods", ed. P.F. Fougere (Dordrecht:Kluwer), 81
van Dyk, D.A., Connors, A., Kashyap, V.L., \& Siemiginowska, A. 2001, ApJ, 548, 224
http://hea-www.harvard.edu/~kashyap/scar.html\#PPD_SRC

This preprint was prepared with the AAS $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ macros v5.2.

[^0]: ${ }^{1}$ Note that this leads to an improper prior, i.e., one that is not normalizable. However, use of such priors does not imply that the posterior densities are also improper.

