
To: CSC Distribution

From: Frank Primini

Subject: Implementing pymc3 in CSC 2.1 Aperture Photometry

Version: 4.0

Date: April 6, 2022

1 Introduction

Aperture Photometry in CSC 2.0 is computed for detections at the stack and observation level,
and for sources at the master level, using the Bayesian formalism described in Primini & Kashyap
(2014). Key to the approach at all levels is the use of Markov Chain Monte Carlo (MCMC) sam-
pling to characterize the marginalized posterior probability distribution (MPDF) for source inten-
sity. Detailed specifications are provided in Primini (2013) and Primini (2019). Although this
approach is satisfactory in general, it fails for a small but significant number of detections and
sources, resulting in NULL values for photometry columns in the catalog database. For example,
∼ 1% of the master sources that include ACIS observations have NULL values for photflux aper b
or photflux aper avg b (failure rates for flux aper b and flux aper avg b are slightly worse be-
cause they’re compounded by known systematic errors in computing model-independent fluxes
for low-count sources).

Rafael hypothesized that part of the problem was due to the particular MCMC routine used
in CSC 2.0, here referred to as sherpa/get draws, and suggested replacing it with a more sophis-
ticated and efficient routine in the OTS python package pymc3. He presented some preliminary
research indicating that pymc3 was able to recover fluxes for some sources with NULL catalog
values (Martinéz-Galarza , 2020).

In this memo I describe the steps required to implement pymc3 in CSC 2.1 Aperture Photome-
try and present the results of more extensive tests that support its use.

2 Implementing pymc3 in CSC 2.1

2.1 Scope of Modifications

I should emphasize that the sole intent of the proposed modifications is to replace the existing
MCMC sampling engine with a different one. That will, of course, necessitate some changes to
the infrastructure that supports the MCMC engine, but the basic Aperture Photometry workflow
remains the same. All Aperture Photometry quantities computed in CSC 2.0 will be computed
in CSC 2.1, and no new quantities will be computed. With one exception, described below, the
definition of all aperture quantities remains unchanged.

1

2.2 Basic Algorithm

All input data needed for pymc3 are contained in the obsid-level prep3 files, which are unchanged
from CSC 2.0. Specifically, these data are the array of raw counts in all apertures in the bundle,
provided in the ’counts’ column C of the source properties table extension, and the exposure-
corrected PSF matrices F, provided in the PSF extensions:

C =

C1

C2
...
B

 ; F =

f11 · · · f1n Ω1

...
. . .

...
...

fn1 · · · fnn Ωn

g1 · · · gn Ωb

 . (1)

Here, C1, C2, ...B represent the counts in the source and background apertures. The quantity fij
is the PSF fraction for source j in aperture i, modified by the exposure for that aperture, and Ωj is
the aperture area, also modified by exposure.

The different types of exposure correction determine the units of the resulting intensities. As
in CSC 2.0, all will be used in CSC 2.1.

The organization and use of these data in pymc3 at the obsid, stack, and master level are de-
scribed in the following sections.

2.2.1 Obsid-Level Photometry

At the level of a single obsid, C and F are used directly in pymc3, as illustrated in the code snippet
in Listing 1.

2.2.2 Stack-Level Photometry

The situation is more complicated when we need to combine data from multiple obsids in a stack.
Here, we still use C and F for each contributing obsid, but combine them into a single, augmented
C vector and F matrix. Thus, for a two-source bundle and two obsids, we have

Ca =

C1
1

C1
2

B1

C2
1

C2
2

B2

; Fa =

f111 f112 Ω1
1 0

f121 f122 Ω1
2 0

g11 g12 Ω1
b 0

f211 f212 0 Ω2
1

f221 f222 0 Ω2
2

g21 g22 0 Ω2
b

, (2)

where the superscripts represent the different obsids. Note, we require source intensities to be
the same in all obsids, with a different background density in each obsid. Thus, the total number
of parameters to fit, i.e. the number of columns in Fa is the sum of the number of sources in the
bundle and the number of obsids. Similarly, the number of rows Fa is the sum of the number of
apertures in the bundle for contributing obsids.

In constructing Fa, we need to make sure that data associated with a particular source or back-
ground in the contributing obsids are all assigned the same column index. If the number of sources
in the bundle is the same in all obsids (as it usually is, since bundle membership is determined
at the stack level) that’s easily accomplished by pasting a column of 0′s in the appropriate back-
ground column location in the individual F before appending to Fa, as indicated in Equation 2
above. The Python function in Listing 2 illustrates how this can be accomplished.

2

1 import pymc3 as pm
2 basic_model = pm.Model()
3 with basic_model:
4 # Define source and background priors
5 # The array C is used to compute the number of sources in the bundle.
6 number_of_sources=len(C)-1
7 s=[]
8 for nsrc in range(number_of_sources):
9 s.append(pm.Uniform(’s_{}’.format(nsrc), lower=0.0,upper=1.0e-8))

10 b = pm.Uniform(’b’,lower=0.0,upper=1.0e-12)
11 # Define modelled stochastic variable mu
12 mu=0
13 # The transpose of the PSF matrix F is used to compute mu.
14 theta=F.T
15 for i in range(number_of_sources):
16 mu += s[i]*theta[i]
17 mu += b*theta[-1]
18 # Define likelihood of observations, given counts C
19 likelihood=pm.Poisson(’C_obs’,mu=mu,observed=C)
20 # Perform MCMC sampling
21 # Define pymc3 output data structure
22 db = pm.backends.ndarray.NDArray()
23 # Do MCMC sampling
24 trace = pm.sample(1000,tune=1000,target_accept=0.95, init=’advi+adapt_diag’, trace

=db,progressbar=False)
25 # Get arrays of draws. Each element in the draws_data list
26 # is an array of draws, corresponding to the source or
27 # background named in the draws_name list.
28 draws_data=[]
29 draws_name=[]
30 for nsrc in range(number_of_sources):
31 src=’s_{}’.format(nsrc)
32 draws_data.append(trace.get_values(src))
33 draws_name.append(src)
34 draws_data.append(trace.get_values(’b’))
35 draws_name.append(’b’)

Listing 1: Example pymc3 code for a single obsid

1 def augment_F(F1,F2):
2 #Appends F2 matrix rows to bottom of F1 matrix, inserting a dummy column
3 # of zeros between the last source column and the background column,
4 # F1 and F2 do not need to have the same number of rows or columns.
5 #
6 # add a column of zeros to F1 for F2 bkg
7 newcol_1=np.zeros([len(F1),1])
8 F1=np.hstack((F1,newcol_1))
9 # add a submatrix of zeros to F2 so it has same number of columns as F11

10 newcol_2=np.zeros([len(F2),len(F1[0])-len(F2[0])])
11 F2_trans=np.hstack((F2,newcol_2)).T
12 # Now swap b row and last zero row of F2 transpose
13 lastndx=len(F2)-1
14 F2_trans[[lastndx,-1]]=F2_trans[[-1,lastndx]]
15 return np.vstack((F1,F2_trans.T))

Listing 2: Function to combine two F matrices

However, if the detection is near the edge of the field-of-view of the stack, it’s possible that one

3

or more sources in the bundle may be outside the valid stack boundaries in one or more obsids.
Consider again the example in Equation 2, but now assume that in obsid 1, source 1 is outside the
valid stack. We have

F1 =

(
f122 Ω1

2

g12 Ω1
b

)
; F2 =

 f211 f212 Ω2
1

f221 f222 Ω2
2

g21 g22 Ω2
b

 ; Ca =

C1
2

B1

C2
1

C2
2

B2

 ; Fa =

0 f122 Ω1

2 0
0 g12 Ω1

b 0
f211 f212 0 Ω2

1

f221 f222 0 Ω2
2

g21 g22 0 Ω2
b

 .
(3)

In constructing Fa, the order of the contributing obsids is arbitrary (it’s analagous to rearrang-
ing the rows in a set of simultaneous linear equations), as long as the same order is followed in
constructing Ca.

Once Fa and Ca have been constructed, MCMC sampling proceeds as in the single-obsid case
(see Listing 3).

1 import pymc3 as pm
2 # Set the pymc3 model
3 # Assume F = augmented F matrix, C=augmented C vector
4 # number_of_sources = total number of source columns in F
5 # The number of background parameters is the number of columns in the augmented # PSF

matrix minus the number of sources.
6 number_of_backgrounds=len(F[0])-number_of_sources
7 basic_model = pm.Model()
8 with basic_model:
9

10 # Priors for the net source and background energy fluxes. These are now
11 # arrays of priors
12

13 s =pm.Uniform(’s’, lower=0.0, upper=1.0e-8, shape=(number_of_sources,))
14 b =pm.Uniform(’b’, lower=0.0, upper=1.0e-12,shape=(number_of_backgrounds,))
15

16 # mu will be the modeled stochastic variable, i.e., the expected
17 # values for flux plus background flux each aperture
18

19 # The transpose of the PSF matrix F is used to compute mu.
20 theta=F.T
21

22 # Expected value of outcome
23 mu = 0
24 for i in range(number_of_sources):
25 mu += s[i]*theta[i]
26 for j in range(number_of_sources,number_of_sources+number_of_backgrounds):
27 mu += b[j-number_of_sources]*theta[j]
28

29 likelihood = pm.Poisson(’C_obs’,mu=mu,observed=C)
30

31 # Now do the MCMC sampling
32 db = pm.backends.ndarray.NDArray()
33 trace = pm.sample(1000,tune=1000,target_accept=0.95, trace=db,progressbar=False,

init=’advi+adapt_diag’)
34 # sdraws and bdraws are now arrays of draws arrays
35 sdraws=trace.get_values(’s’)
36 bdraws=trace.get_values(’b’)

Listing 3: Example pymc3 code for multiple obsids

4

2.2.3 Master Source Photometry

The situation becomes yet more complicated in computing photometry for master averages or
Bayesian Blocks. Fa and Ca are still computed using the approach in Section 2.2.2, but the con-
tributing obsids may now come from different stacks, in which the source labelling and bundle
membership are different. The number of sources should now include all the sources in all the con-
tributing bundles, and all stack component IDs corresponding to a given master source should be
assigned the same source column in Fa. The mst3 files provide the association of different stack
component IDs with a particular master source.

Consider, for example, a master source M1 with two contributing stacks, S1 and S2, each with
a single obsid, S1.O1, and S2.O2. Let’s further assume that S1.O1 is a two-source bundle, with
region-ids S1.O1.r1 and S1.O1.r2, and S2.O2 is a one-source bundle with region-id S2.O2.r3.
Finally, let’s assume the order of components in S1.O1 is [S1.O1.r1, S1.O1.r2] (so that component
S1.O1.r1 corresponds to the left-most column in F). The F matrices for the two stacks are then

FS1.O1 =

 fS1.O1
11 fS1.O1

12 ΩS1.O1
1

fS1.O1
21 fS1.O1

22 ΩS1.O1
2

gS1.O1
1 gS1.O1

2 ΩS1.O1
b

 ; FS2.O2 =

(
fS2.O2
11 ΩS2.O2

1

gS2.O2
1 ΩS2.O2

b

)
. (4)

If the components S1.O1.r1 and S2.O2.r3 comprise M1 (and component S1.O1.r2 is associ-
ated with a different source, say M2), then the augmented matrix for M1 is

Fa =

fS1.O1
11 fS1,O1

12 ΩS1.O1
1 0

fS1.O1
21 fS1.O1

22 ΩS1.O1
2 0

gS1.O1
1 gS1.O1

2 ΩS1.O1
b 0

fS2.O2
11 0 0 ΩS2.O2

1

gS2.O2
1 0 0 ΩS2.O2

b

 . (5)

If, however, components S1.O1.r2 and S2.O2.r3 comprise M1, Fa is given by

Fa =

fS1.O1
11 fS1,O1

12 ΩS1.O1
1 0

fS1.O1
21 fS1.O1

22 ΩS1.O1
2 0

gS1.O1
1 gS1.O1

2 ΩS1.O1
b 0

0 fS2.O2
11 0 ΩS2.O2

1

0 gS2.O2
1 0 ΩS2.O2

b

 . (6)

In either case, the augmented C vector is given by

Ca =

C1
2

B1

C2
1

C2
2

B2

 . (7)

2.3 Determining the Range of Uniform Priors

In CSC 2.0, uniform priors were used for both source and background. The range of the priors
was determined from sML ± 5 × σML, where sML, σML are the Maximum-Likelihood values and

5

uncertainties that are the solution to the matrix equation

F×

s1
s2
...
b

 = C, (8)

where F and C are as defined in Equation 1 (see e.g. equations 8 & 9 in Primini & Kashyap (2014)).
When sML − 5σML < 0, the lower bound of the prior was set to a very small positive number.

This approach appeared to work well for the pymc3 tests described below, for samples that
were not dominated by sources or detections with NULL CSC 2.0 fluxes. However, for the NULL
samples (samples 1&2), pymc3 often returned modes and bounds which, although not NULL,
were unphysically small. This is illustrated in Figure 1 (a), where I compare the distribution of
pymc3 draws for an observation with a NULL b band CSC 2.0 flux, using both priors set as in CSC
2.0 (”5-σ”) and a less restrictive prior with a range of 0 − 10−8, comparable to the range of fluxes
in CSC 2.0 (”unrestricted”). The 5-σ draws are two to three orders of magnitude lower than the
unrestricted draws, and fall sharply at the high end of the distribution, indicating that pymc3 did
not properly sample the parameter space.

(a) (b)

Figure 1: (a) Distribution of draws for region id 80 in obsid 78; (b) Distribution of pymc3 upper bounds
for 500 observations with NULL b band fluxes, computed using both 5-σ and unrestricted priors.

I hypothesize that, in such cases, the Maximum-Likelihood solution was in fact negative and
reset to 0 in CSC 2.0, and the Maximum-Likelihood uncertainty underestimated the actual uncer-
tainty. This limited the range of the prior to a very small section of the parameter space. This
hypothesis is supported by the data in Figure 1 (b), where I compare distributions of pymc3 upper
bounds for a sample of ∼ 500 observations with NULL b band fluxes, computed using both types
of priors. The distribution computed with 5-σ priors for observations with non-zero Maximum-
Likelihood values (ml flux) is consistent with the distribution of bounds computed using unre-
stricted priors. However, for observations with ml flux = 0, the distribution for bounds com-
puted with 5-σ priors is bi-modal, with a significant number of observations reporting very small
upper bounds.

To avoid both the difficulties in determining which observations with ml flux = 0 would suc-
ceed with 5-σ priors and the added complexity of using differently defined priors for different

6

observations, I propose adopting unrestricted priors in all cases. After several rounds of experi-
mentation, I’ve determined prior ranges that yielded successful results for both NULL and non-
NULL samples. These are listed in Table 1, and were used in all the tests below. An example of
their use is shown in lines 9 & 10 in Listing 1.

Table 1: pymc3 Uniform Prior Bounds
Flux Units Parameter Plower Pupper

Energy Flux Source 0.0 1.0× 10−8

Energy Flux Background 0.0 1.0× 10−12

Energy Flux HRC Background 0.0 1.0× 10−13

Photon Flux Source 0.0 1.0× 10−2

Photon Flux Background 0.0 1.0× 10−6

Count Rate Source 0.0 10.0

Count Rate Background 0.0 1.0× 10−3

Net Counts Source 0.0 1.0× 106

Net Counts Background 0.0 10.0

2.4 Required Number of Sampling Chains and Samples per Chain

In CSC 2.0, a single sampling chain was used, with 5000 samples after a ”burn-in” period of 100
samples. In pymc3, multiple chains are supported, and in the tests discussed below ranged from
2 − 4, depending on the machine. Multiple chains are desirable because they enable a better de-
termination of the MCMC diagnostic r̂. Also, in the tests discussed below, the number of samples
per chain was 1000 is a ”burn-in” period of 1000, yielding a total number of draws of 2000− 4000.
This proved more than adequate to characterize the MPDFs.

3 Verification Tests

The goal of these tests was to demonstrate that pymc3 both reduced the failure rate for CSC 2.0
sources and detections with NULL fluxes, and produced results comparable to Sherpa/get draws
for successful CSC 2.0 detections and sources. The detailed strategy was described in the test plan
circulated in February, 2020 (Primini , 2020). In the end, I was unable to achieve the sample sizes
specified in the plan for all tests, but I believe the samples were sufficient to prove the point.

3.1 Overall Procedure

For each sample, a list of obsids, stacks, or master sources, plus the corresponding source region
identifiers were generated. These data were used to identify the appropriate prep3 files for each
sample member (stack detections and master sources could have multiple prep3 files), and the
prep3 data were used as input to the pymc3 MCMC engine.

For each detection or source, 2 − 4 sets of 1000 MCMC draws (i.e. MCMC-sampled values of
source or background intensity) were generated, excluding burn-out draws, and the distribution
of the combined set of draws was smoothed with an Epanechnikov Kernel Density Estimator,
scaled to the rms about the mean. Uniformly-spaced samples from this smoothed distribution

7

Table 2: pymc3 Test Samples

Sample Level Description

1 Obsid Randomly selected sample of ∼ 1000 obsid-level detections with NULL
flux aper u values

2 Obsid Sample provided by a CSC user, of ∼ 2500 obsid-level detections with
NULL fluxes in either h, m, or s bands

3 Obsid Randomly selected sample of ∼ 1000 obsid-level detections with valid (i.e.
not NULL, not upper limits) flux values in various ACIS energy bands in
CSC 2.0

4 Obsid Randomly selected sample of ∼ 1000 obsid-level detections with valid s-
band upper limits in CSC 2.0

5 Obsid Randomly selected sample of ∼ 400 HRC obsid-level detections

6 Stack Randomly selected sample of ∼ 1000 stack-level detections with valid
stack-average fluxes in CSC 2.0

7 Stack Randomly selected sample of ∼ 5000 stack-level detections with valid
stack-average fluxes in CSC 2.0

8 Master Sample of ∼ 3000 s band master source averages from single-source bun-
dles with five contributing obsids from multiple stacks

9 Master Sample of ∼ 3000 s band master source averages from single-source bun-
dles with five contributing obsids from multiple stacks

10 Master Sample of ∼ 1000 u band master source averages from single-source bun-
dles with five contributing obsids from multiple stacks

were then used to estimate the mode and 68% bounds. These values were then compared to the
corresponding flux aper, flux aper lolim, and flux aper hilim values.

For quantitative comparison of pymc3 amd CSC 2.0 fluxes, I defined the quantity

f =
2× |flux aper −mode|

flux aper hilim− flux aper lolim
, (9)

where flux aper, flux aper lolim, flux aper hilim refer to the appropriate CSC 2.0 flux, phot-
flux, src rate, src cnts, and bounds, and mode, lolim, hilim refer to the corresponding pymc3 mode
and bounds. Because I didn’t force pymc3 modes to be 0 for upper limits, as we did in CSC 2.0, I
used an alternate definition

f =
2× |flux aper hilim− hilim|

flux aper hilim− flux aper lolim
, (10)

for upper limits (i.e. when flux aper = 0).

3.2 Test Results

A description of the test samples used is given in Table 2, and a summary of results is given in
Table 3. Some samples were used multiple times to test different flux units or energy bands.

8

Table 3: pymc3 Test Results

Sample Flux Units Energy Band Nsuccess/Ntotal f fmedian f99 % with f ≤ 1.0

1 Energy Flux u 866/867 N/A N/A N/A N/A

2 Energy Flux h 830/846 N/A N/A N/A N/A

2 Energy Flux m 1425/1522 N/A N/A N/A N/A

2 Energy Flux s 2296/2367 N/A N/A N/A N/A

3 Energy Flux b,h,m,s,u 822/912 0.1 0.1 0.3 99.6%

4 Energy Flux s 825/833 0.51 0.5 1.41 92.1%

5 Energy Flux w 427/431 16.0 0.6 1.4 86.7%

5 Photon Flux w 431/431 1.0 0.6 1.6 88.6%

6 Photon Flux b,h,m,s,u 956/981 0.8 0.1 6.0 98.4%

6 Count Rate b,h,m,s,u 956/981 0.4 0.1 1.0 98.8%

6 Net Counts b,h,m,s,u 956/981 6.0 0.1 47.8 96.9%

7 Energy Flux b,h,m,s,u 4700/5000 143.0 0.1 1.2 99.0%

8 Photon Flux b 797/798 0.1 0.1 0.4 98.1%

9 Photon Flux s 3191/3193 0.2 0.1 1.1 94.0%

10 Photon Flux u 1095/1096 0.4 0.2 2.0 81.4%

1. There’s an apparent offset between pymc3 hilim and flux aper hilim s; pymc3 hilim ∼ 1.2 ×
flux aper hilim s.

In all applicable samples, fmedian < 1, with most at or near the value of 0.1 specified in the
Test Plan (Primini , 2020). The values of f are somewhat larger. Although most are still less than
1, three samples have f > 1, the largest being Sample 7 with f = 143. Plots of the distribution of
f and a comparison of the pymc3 and CSC 2.0 fluxes for this sample are shown in Figure 2. In this
case, the large value of f is primarily due to two extreme outliers with f 7300 and f 6.6 × 105. It
should be noted that I did not remove outliers from any samples prior to computing statistics on
f . In general, a few, very large outliers can severely bias f with little effect on fmedian.

I did not compute f for the NULL samples 1&2, because I deemed the Maximum-Likelihood
values and uncertainties needed to compute f for these detections to be unreliable (see Section 2.3).

4 Timing Tests

To estimate the processing burden of pymc3 I used the python time.perf counter() function to mea-
sure the time spent in each pymc3 rountine, as illustrated in Listing 4, and compiled the cumula-
tive time in all pymc3 routines for a subset of observations in the samples in Table 2. I used ∼ 1000
single-obsid and multi-obsid stacks and ran tests on three different machines: the HEAD-LAN
compute server han-v, and two dedicated desktops, devel1 and dagny. The results are shown in
Table 4.

9

(a) (b)

Figure 2: (a) Distribution of f for Sample 7; (b) Comparison of pymc3 and CSC 2.0 fluxes or upper bounds
for Sample 7. The data point in blue is an extreme outlier with f ∼ 6.6× 105.

1 t0=time.perf_counter()
2 s = pm.Uniform(’s’, lower=0.0, upper=1.0e-8, shape=(number_of_sources,))
3 b = pm.Uniform(’b’, lower=0.0, upper=1.0e-12, shape=(number_of_backgrounds,))
4 t1=time.perf_counter()
5 dt_prior=t1-t0

Listing 4: Computing time spent generating priors

Table 4: Timing Test Results
Machine Type of Stack Number of Runs Time per Run (sec.)

han-v multi-obsid 955 91
dagny multi-obsid 965 22
dagny single-obsid 958 12
devel1 multi-obsid 956 13

It should be noted that the time.perf counter() function includes both system and process time,
which may account for the large difference between the performance on the han-v server and the
dedicated desktops. Also note that these results apply to a single band (out of 5 typically) and a
single aperture type (detect or ecf90). Actual times per source may be a factor of ∼ 10 larger.

5 Background Expansion Tests

In CSC 2.0, background apertures with too few counts were expanded to include more counts. This
was deemed necessary to prevent aperture photometry from failing. The background expansion
was done independently in each band, resulting in different area aperbkg values for different
bands, in violation of the requirement of constant aperture areas across all bands. To address this,
once the archive was populated, a migration step was run to set the background apertures in all

10

bands to the b band value, and to scale the background aperture counts in other bands by the ratio
of the b band aperture to that band’s aperture. I estimated that∼ 30% of the CSC 2.0 observations
were affected.

The improved performance of pymc3 over sherpa/get draws() for CSC 2.0 sources/detections
with NULL fluxes suggests the background expansion can be avoided in CSC 2.1. To investigate
this, I ran pymc3 on a set of observations in the CAT5.0 integration test set, with aperture quantities
from prep3 files generated with and without background expansion. The (admittedly small) sam-
ple included both detect and ECF90 apertures. Because expanded background cases typically in-
volve few counts, I used photon fluxes, to avoid the known systematic errors in model-inependent
energy flux for such cases.

(a) (b)

Figure 3: Comparison of modes (a) and upper bounds (b) computed with and without expanded background
apertures.

Results are shown in Figure 3 and indicate good agreement between the ”unexpanded” and
”expanded” values.

I also compared the photon fluxes from the unexpanded backgrounds to their corresponding
CSC 2.0 photflux aper values. These results are shown in Figure 4 and also indicate good agree-
ment, except for detect and ecf90 aperture values for two detections, region id 13 and 23 in obsid
1047.

A larger test dataset is desirable here, but on the basis of this limited testing, I conclude that
we can avoid background expansion when using pymc3.

6 Addressing Failures

I anticipate two failure modes for pymc3, and offer some recommendations for their mitigation.

6.1 When pymc3 Fails

In CSC 2.0, if sherpa/get draws() failed, we attempted to re-run after freezing background param-
eters at values determined by corresponding bkgmaps. In principle, We can address hard pymc3
failures in the same way. We can estimate the background density from counts and psf matrix

11

(a) (b)

Figure 4: Comparison of unexpanded pymc3 modes (a) and upper bounds (b) to corresponding CSC2.0
photflux and photflux hilim values.

data in the prep3 files, as bfrozen ' B/Ωb, where B and Ωb are as defined in Equation 1. this is
illustrated in the code block shown in Listing 5.

1 with basic_model:
2 # Priors for the net source and background energy fluxes
3 s=[]
4 for nsrc in range(number_of_sources):
5 s.append(pm.Uniform(’s_{}’.format(nsrc), lower=0.0,upper=prior_bound))
6 #
7 # Approximate background density by total background aperture counts divided
8 # by exposure-corrected aperture area
9 #

10 b = C[-1]/theta[-1,-1]
11

12 # mu will be the modeled stochastic variable
13 # i.e., the expected values for theta
14 # (source flux plus background flux in each aperture)
15 mu = 0
16

17 # Compute the expected flux theta_i in each aperture spec
18 # as the sum of contributions from all sources plus background.
19 for i in range(number_of_sources):
20 mu += s[i]*theta[i]
21 mu += b*theta[-1]

Listing 5: Freezing the Background Parameter

To demonstrate the validity of this approach, I’ve rerun the data in Sample 4, with backgrounds
frozen as in Listing 5. The results are shown in Figure 5 and indicate good agreement between the
source flux upper limits computed with and without frozen background parameters (this is the
appropriate quantity to compare since this is a sample of CSC 2.0 upper limits). It should also be
noted that while 825 of 833 sample members were run successfully when fitting the background
parameter, all 833 succeeded when the background was frozen, suggesting that this approach can
recover pymc3 failures.

An alternative approach to addressing pymc3 failures is to adjust to bounds of the priors. Based

12

Figure 5: Comparison of Sample 4 upper limits computed with and without frozen background parameters.

on my experiences in testing samples and experimenting with different priors, I find that pymc3
failures are most likely to occur if Pupper is set too high, and that reducing it by a factor of ∼ 10
may eliminate the error. However, this is an ad hoc approach with no guarantee of success on the
first iteration, and is not recommended over freezing background parameters.

6.2 When pymc3 Values Are Unrealistic

This failure mode is mode difficult to identify, since the pymc3 routines run to completion without
error. However, a close examination would indicate unreasonable values for modes or bounds.

For example, the modes for either source or background could appear ”pegged” at or near the
upper bound of the corresponding prior. This could occur if we encounter a very bright or flaring
source, whose intensity exceeds the limits on source priors in Table 1, which were based on CSC 2.0
sources. Alternatively, the source could be in or near a very bright extended background region,
and the background intensity exceeds the limit on background priors. I’ve examined ∼ 7500
draws distributions from Samples 2&7 in Table 2, and found one case in which the background
prior was pegged. That distribution is shown in Figure 6, for Obsid 16190, region id 716, from
stack acisfJ0332281m274818 001 in Sample 7.

We can use a simple ”mode+3σ” test to identify such distributions. If mode, hilim, lolim are
the mode and upper and lower confidence bounds of the KDE-smoothed draws distribution, then
we can identify a distribution as pegged if

mode+
3

2
(hilim− lolim) > Pupper. (11)

Another example of unrealistic values occurs in estimating energy fluxes. This could occur if
there are too few counts in either source or background apertures, due to the known systematic
errors in estimating model-independent energy fluxes in such cases. Alternatively, as with the
NULL sources discussed in Section 2.3, the MCMC sampling may be restricted to a very narrow
range of parameter space near 0 flux. It should be relatively easy to identiy such cases by requiring
that modes and upper bounds to fluxes correspond to reasonable net counts. For example, for a
power law spectrum with typical NH and slope, ∼ 3 net counts in a ∼ 10Msec ACIS observation
in 2020 would correspond to a b band flux of∼ 5×10−18ergs− cm−2−s−1. We could thus require

13

Figure 6: Histogram of background draws distribution that exceeds Pupper of the background prior.

that CSC 2.1 fluxes and bounds less than this value be set to NULL. This could be done as fluxes
are computed or in a simple migration step once CSC 2.1 is complete.

7 Recommendations

I recommend that we adopt pymc3 for CSC 2.1 Aperture Photometry, following the procedures
outlined in Listings 1− 3. Specifically,

1. All Aperture Photometry quantities computed in CSC 2.0 will be computed in CSC 2.1;

2. All aperture definitions will remain the same with the exception that no background expan-
sion will be done;

3. Scaling covariance matrices using int unc() should be skipped; ad hoc seeding of the MCMC
sampler is not needed in pymc3;

4. At least two independent MCMC chains should be computed for each MPDF, with 1000
draws and a comparable number of ”burn-in” draws (see parameter ”tune” in line 24 of
Listing 1);

5. The distribution of draws from the combined chains will be examined to identify cases where
source or background intensities are ”pegged” at the upper range of their priors, using the
prescription given in Equation 11; in such cases, Pupper for the offending prior should be
increased by a factor of 10 and pymc3 rerun; if the draws distribution remains pegged: for
photometry from single obsids, the photometry values should be set to NULL and the case
noted; for photometry from multiple obsids, the offending obsid should be excluded and
photometry recalculated;

6. The combined draws from all chains will be used to compute modes and bounds (including
for upper limits) using the same procedures used in CSC 2.0;

7. Cases in which pymc3 fail should be re-run with frozen background parameters; if they still
fail, they should be re-run with background priors reduced by a factor of 10; if they still fail,
the photometry should be set to NULL and the case noted;

14

8. For cases not identified as upper limits, computed energy fluxes and bounds should be
greater than ∼ 5× 10−18ergs− cm−2 − s−1 (TBR); if not, they should be set to NULL.

15

References

Martinéz-Galarza, R. 2020, An Improved Method for MCMC Sampling in CSC2 Aperture Pho-
tometry

Primini, F. 2013, Aperture Photometry Specifications for CSC R2

Primini, F. A., & Kashyap, V. L. 2014, ApJ, 796, 24

Primini, F. 2019, Specifications for Combining Data from Multiple ObsIDs in Aperture Photometry

Primini, F. 2020, Test Plan for PYMC3 Upgrade to Aperture Photometry

16

https://drive.google.com/file/d/18K6_kII597xQ4E5F-fX_p_wQnVyyoLZJ/view?usp=sharing
https://drive.google.com/file/d/18K6_kII597xQ4E5F-fX_p_wQnVyyoLZJ/view?usp=sharing
https://cxc.cfa.harvard.edu/csc/memos/files/Primini_aperture_photometry_specs.pdf
https://cxc.cfa.harvard.edu/csc/memos/files/Primini_Combining_Data_from_Multiple_ObsIDs_in_Aperture_Photometry.pdf
https://drive.google.com/file/d/1Sh022k_-6xjiexQY4dzYv8Fcrf3BeDdN/view?usp=sharing

	Introduction
	Implementing pymc3 in CSC 2.1
	Scope of Modifications
	Basic Algorithm
	Obsid-Level Photometry
	Stack-Level Photometry
	Master Source Photometry

	Determining the Range of Uniform Priors
	Required Number of Sampling Chains and Samples per Chain

	Verification Tests
	Overall Procedure
	Test Results

	Timing Tests
	Background Expansion Tests
	Addressing Failures
	When pymc3 Fails
	When pymc3 Values Are Unrealistic

	Recommendations

