
Specification Document: Tying CSC Astrometry
to the Gaia Reference Frame. Translation-only approach
Rafael Mart́ınez-Galarza (CfA) Date: September 6, 2022

1 Motivation

This document describes how to achieve fine stack astrometry corrections for release 2.1 of the Chandra
Source Catalog, by anchoring the coordinates of stack-level detections for each stack to the Gaia reference
frame, using a translation-only approach. The reason why we adopt a translation-only approach is
that analysis of Chandra aspect solutions predict that the corrections to coordinates due to aspect
uncertainties related to rotation and scaling are small. We have in fact corroborated that any additional
corrections introduced by rotation and scaling are only a fraction (about 30% or less) of the PSF size at
off-axis angles up to 10 arcmins. Therefore, SKY (X,Y) positions will not change, only the mapping to
(RA, Dec). Doing otherwise would imply a major change to the physical coordinate system as defined
in the data systems, and we have therefore decided not to include them. We have nevertheless also
produced a specification document for the full transformation, including rotation and scaling. We intend
to include the full transformation in the next full release of the catalog.

This document first provides an overview of the scientific requirements, and then describes the selected
algorithmic approach to achieve these requirements. We also describe main output of the algorithm, i.e.,
the resulting stack-specific translations that transform CSC detection coordinates to absolute coordinates.
We thoroughly test this approach by applying it to existing CSC2.0 stacks. The resulting approach is
applicable to the currently existing ∼ 7300 CSC2 stacks, as well as new stacks that will be the result of
adding newer observations (post-2014) to the catalog database, although we will need manual Quality
Assurance for a fraction of the stacks. For CSC 2.1, we expect to have a total of about 10,000 stacks.

2 General goal

The specific goal of the algorithm described here is to tie the CSC astrometry to the Gaia reference
frame, which will be assumed to be an absolute reference. The catalog astrometry is currently based
on telemetry information provided by the aspect camera during the observations and is refined during
processing by cross-matching sources from different observations in a stack. However, because of the
telescope’s spatial resolution, the effect of off-axis observations, and the effect of optical axis tilting over
time, the systematic errors in the source positions can be as large as a few arcseconds. Gaia astrometry is
a suitable absolute reference, both because of its high accuracy and for its all-sky coverage. We therefore
require an algorithm capable of linearly translating the CSC coordinates to match the selected absolute
reference frame. This should be done at the stack level. As a result, the inter-stack coordinate differences
for a given source will be minimized, as they currently can reach several arcseconds.

3 Requirements

The following is a list of scientific requirements for the coordinate update:

• The required linear translation needs to be performed at the individual stack level, i.e., a single
translation of coordinates is performed for each stack. The translation can also be applied at the
observation level, if desired.

• The approach adopted needs to be applicable to both existing CSC2.0 stacks, as well as to new
stacks that will be generated by the addition of new observations.

• The translation requires identifying matching detections in both the source catalog (CSC) an the
target catalog (either Gaia DR2 or the ALLWISE catalog). Stack fine astrometry must be executed
prior to the master match pipeline, a stage at which “sources” and their associated properties do
not yet exist. Therefore the coordinates to be used are stack (or obsid) detection coordinates.

1

Even when this pipeline is applied to existing CSC2.0 data, it is important to always use the
coordinates of CSC stack-level detections. Master source coordinates are averages over the stack-
level detection coordinates in the uncorrected reference frames, and are therefore not appropriate
for this analysis.

• PSF degradation far from the optical axis affects our capability to find suitable matching sources at
large off-axis angles. Therefore, we need to impose a limit on the off-axis angle considered for the
sources. In the present document we use a limit of 10 arc minutes, which in general gives enough
matches for the majority of the stacks while still keeping the PSF relatively small. In combination
with this radius, error weighting of the coordinates can be performed, as described below, in order
to give less importance in the calculation to detections that have larger errors.

• The stack fine astrometry step should be executed prior to master match step, and it should improve
our ability to identify linkages between detections and master sources. As a test of this capability,
currently overlapping CSC2 stacks with detections corresponding to the same master source should
have their coordinate differences reduced as a result of the stack fine astrometry transformation.

• The systematic offset between the updated CSC coordinates and the absolute reference (Gaia)
coordinates resulting from the translation need to be smaller or equal than the current systematic
offset, and within the limit imposed by the current CSC2 astrometric errors. A good estimate of
this error for a particular stack comes from computing the standard deviation of the difference
between the target (Gaia) and the source (CSC) detection matches.

Once the stack fine astrometry transformation has been applied, one could leverage this information
to estimate the absolute astrometric uncertainty of a source by adding this standard deviation (for
the stack) to the relative uncertainty derived for each source from the position error draws. In
order to do so, the standard deviation of the difference between the reference Gaia coordinates
and the corresponding transformed CSC coordinates for each stack should be stored. In § 5.5.7 we
describe how to do this.

• The number of stacks requiring manual intervention to achieve the coordinate transformation should
be kept at a minimum. Ideally they should be less than 600 stacks. This includes stacks with too few
reference sources to perform a meaningful transformation, and automatically transformed stacks
where source crowding or source scarcity make the transform unreliable.

• Relevant proper motion considerations need to be take into account. Specifically, sources that
could have moved in the sky during the duration of the Chandra Mission by more than the typical
astrometric error need to either be corrected for, or ignored in the analysis. Here we recommend
to ignore them, as specified below.

4 Weighted Least Squares

In order to perform the translation-only transformations, we will use a least squares approach (i.e., we
will compute the translation that minimizes the Euclidean distance between source and target coordinate
pairings), but we will add the option -and strongly advice to use this option- to weight the contribution
of each pairing to the least squares sum according to the total position error for that pairing.

In the standard least squares approach, the goal is to adjust the parameters of a model function
to best fit the data. For the purposes of this specification document, the model function is a linear
translation of coordinates between the source data set (CSC coordinates) and the target data set (Gaia
or ALLWISE coordinates), and the data in question are the target coordinates. The statistic used to
evaluate the goodnes of this fit is the sum of the squares of the differences between the transformed
source coordinates and the target coordinates.

For a given stack, the data set consists of the standard coordinates of the detections for both the
source and target catalogs (ξi, ηi)CSC and (ξi, ηi)Gaia, where the latter take the role of the dependent
variable. The model function takes the form f(ξCSC

i , ηCSC
i , β), where β is a vector containing the function

parameters, in this case the translation in each of the two dimensions, i.e., β = {∆ξ,∆η}. For a given

2

point i in the data set, its residual is given by the Euclidean distance between the transformed coordinates
and the target coordinates:

ri =
√

(ξGaia
i − ξtransi)2 + (ηGaia

i − ηtransi)2 (1)

where ξtrans = ξCSC + ∆ξ and ηtrans = ηCSC + ∆η.
For a total of n suitable pairings in a given stack, we therefore attempt to minimize:

S =

n∑
i=1

r2i (2)

by adjusting the elements of β.
The position errors for stack detections are not uniform. They depend on the number of counts for

a given detection, and also on its off-axis angle. Therefore, detections with large error could bias the
translation towards larger values of the coordinate shifts. In order to account for that, we can introduce
a weight wi to each coordinate paring in the sum, so that detections with larger errors will contribute
less to the sum:

S =

n∑
i=1

wir
2
i (3)

Where wi = 1/σ2, σ being the square root of the product between the semi-major and semi-minor
axis of the error ellipses derived from MLE for the corresponding pairing. It has been demonstrated
(Aitken, 1935) that if the weights are the reciprocal of the variance of the measurement (1/σ2), then the
derived parameters of the transformation are a best linear unbiased estimator.

This weighted least-squares (WLS) approach can be easily implemented using Python’s scipy.optmize.least_squares
tool, as described in § 5.5.

5 Implementation for CSC fine stack astrometry

In this section we describe how to use weighted least squares to perform an update of the CSC coordinates,
using Gaia coordinates as the target absolute reference. We first describe how to prepare the input data.
We then describe the parametrization of the WLS method that best suits our purposes. Depending on
the number of CSC sources within a stack, and depending on the number of Gaia matches found for
that set of sources, the coordinate correction can be performed either directly, or using an intermediate
translation involving another catalog of sources that has been independently matched to Gaia. Below
we describe how to perform both approaches, using the ALLWISE catalog as an intermediate catalog
for those stacks requiring a two-step approach.

5.1 Preparing the datasets

The input to this new CSC stack astrometry algorithm needs to be a list of detection coordinates and
their respective postion errors (semi-minor and semi-major axis of the error ellipses) for each stack (the
source list), accompanied by a list of source coordinates for Gaia sources in a similar area of the sky. No
position errors are required for the Gaia set.

Therefore, for each stack a list of coordinates and position errors for detections needs to be prepared.
These coordinates should be in units of arcseconds, and should be defined on the tangent plane to the
stack in question, i.e., standard coordinates (ξ, η) should be used1. The standard coordinates are defined
as:

ξ =
cos δ sin(α− α0)

sin δ sin δ0 + cos δ cos δ0 cos(α− α0)

η =
sin δ cos δ0 − cos δ sin δ0 cos(α− α0)

sin δ sin δ0 + cos δ cos δ0 cos(α− α0)

(4)

1Alternatively, physical X and Y coordinates can be used.

3

where (α0, δ0) refer to the coordinates of the tangent plane reference point. The inverse transforma-
tions are obtained as:

tan(α− α0) =
ξ

cos δ0 − η sin δ0

sin δ =
sin δ0 + η cos δ0√

1 + ξ2 + η2

(5)

Since the stack fine astrometry step will happen before master sources are created, the coordinates
to be used here are the detection coordinates. For each existing or new stack that has gone through the
source detection pipeline, this list can be constructed by first identifying the stack centroid, defined by
the stack event list file header keywords ra_stack and dec_stack, and then performing a cone search of
all stack detections that have been classified as TRUE or MARGINAL2 within a certain radius of this
centroids. A search radius of 10 arcminutes strikes a good compromise between the potential number
of control sources and the undesirable effects of PSF degradation too far from the optical axis. Convex
hulls should be excluded from the list of detections for given stacks. Detections that are flagged for
saturation, i.e. cratered detections, (sat_src_flag=TRUE) should be excluded. Specifically, detections
for which o.sat_src_flag = 1 for any of the contributing observations should also be excluded.

Next is to construct the target list of sources. Since many more Gaia sources are expected in any
particular region than CSC sources, this list can be constructed for each stack by performing a cross-
match between the list of detection coordinates for the stack, and the Gaia DR2 catalog (or source
catalog) of sources. For this cross match, a reasonable search radius is 3 arcseconds, as the largest
between-stack offsets that we have observed in CSC2 is about 2.5 arcseconds. It is recommended to get
all matches for both Gaia and ALLWISE for all stacks that are determined to be suitable for processing,
and store them locally prior to running the WLS translation. Additionally, the density of Gaia and
ALLWISE sources within 10 arcminutes of each stack centroid should be recorded prior to running the
pipeline. This is because, as specified later, stacks with very high density of either Gaia or ALLWISE
sources are more prone to error due to the increased likelihood of serendipitous matches that are not
real.

In addition, the list of Gaia-ALLWISE source associations is needed for each stack. This is to support
the two-step transformation described in § 5.5. As part of the second data release of Gaia (DR2), the Gaia
source catalog has been independently matched with several external catalogs, including ALLWISE. The
matches table is called gaiadr2.allwise_best_neighbors and only includes the detection identifiers for
both catalogs. A procedure is detailed in § 5.5 describing how to search for the relevant. Gaia/ALLWISE
matches.

The input needed is therefore constructed from:

• The source list of coordinates (with positon errors)

• The target list of coordinates for each stack constructed as described above.

• The auxiliary list of Gaia-ALLWISE matches is all the input we need.

• The density of Gaia sources within rstack arcminutes of each processed stack, for example, in units
of sources per square arcminute.

• The density of ALLWISE sources within rstack arcminutes of each processed stack, for example, in
units of sources per square arcminute.

In Figure 1 we show the distribution of the number of CSC2 detections within a stack. There are
223 stacks with a single CSC2 detection, 221 with 2 detections, and 204 with 3 detections. When cross-
matched with Gaia and ALLWISE within 3” of each detection, this results in a total of 977 stacks
(out of 7243, i.e., the 13%) with few enough matches to justify manual QA (see 5.5). The number of

2Although MARGINAL detections typically have lower signal to noise ratios, and subsequently larger position error
ellipses, their position error distributions do not dramatically depart from the distribution for TRUE sources. We therefore
include them here, as the benefit of having more matches outweights the larger position errors, specially since astroalign
deals well with outliers.

4

stacks requiring manual QA will ultimately increase, because there will be additional stacks with enough
matches, but that are too crowded with Gaia or ALLWISE sources and will require inspection. Overall,
it is expected that the total fraction of stacks that will require QA is about 15% (or about 1500 stacks)
for CSC2.1.

5.2 Proper motion considerations

Some of the Gaia DR2 sources have large radial proper motion vectors, and their recorded position in
both catalogs corresponds to a particular observation epoch, or to an average over epochs. If the proper
motion vector results in a change of coordinates larger than the relative astrometric error in CSC, which
averages around 0.5 arcseconds (this is the case for proper motions larger than about 25 mas/yr), then
there is a chance that the position entries for the source in both source and target catalogs correspond
to different epochs, as the source is not observed at the same time for both surveys.

The fraction of Gaia sources with recorded radial proper motions that fall in this high proper motion
category is less than 2%, and less than 1% if we extend the tolerance to 50 mas/yr. Since sources with
radial proper motion between 25 and 50 mas/yr are unlikely to significantly affect the fine astrometry,
while providing additional sources in less crowded fields, in what follows we ignore those sources sources
with radial proper motion larger than 50 mas/yr for the analysis. In order to exclude all matches that
include Gaia sources with radial proper motions larger than 50 mas/yr, it is necessary to filter using
columns pmra and pmdec from the Gaia DR2 source catalog, as described in § 5.5.

Gaia sources with null proper motions in both RA and DEC should be included as well, as they
correspond to extragalactic sources with very small proper motions.

Note that if there are corresponding ALLWISE sources to Gaia sources with high proper motions,
those corresponding ALLWISE sources should also be excluded from the ALLWISE list. Therefore,

5.3 Parametrization and implementation of the WLS translation

The scipy implementation of the least squares method solves the problem of minimizing S (Eq. 3) by
setting the gradient of the model function with respect to the parameters to zero:

∂S

∂∆ξ
= 2

∑
i

wiri
∂ri
∂∆ξ

= 0,
∂S

∂∆η
= 2

∑
i

wiri
∂ri
∂∆η

= 0 (6)

In order to make sure that the function has a derivative everywhere and is robust for optimization,
prior to the minimization the method also passes the residual as an input to a sub-linear loss function
ρ(z) that will allow the differentiation and will add robustness against outliers3. There are several options
for this loss function, and our test indicates that for the problem at hand, which is a linear problem, the
Cauchy loss is the best option to deal with strong outliers.

The derivatives are solved numerically starting from some starting point, which by default can be
set to 0 (no translation). All that needs to be passed to scipy.optimize.least_squares is a function
f that evaluates the residual (and multiplies it by the weights), the starting point or initial guess for
the parameters, the type of loss function that will be applied, the bounds for the parameters (i.e., the
maximum and minimum values they can adopt), and the arguments to be passed to the function f ,
namely the source coordinates, the target coordinates, and the errors in the source coordinates (the CSC
position errors). We adopt bounds of ±5 arcseconds for each of the model parameters, as we do not
expect shifts in coordinates larger than 3 arcseconds, but we leave some additional wiggle space in case
there are extreme outliers. A call to the WLS method then looks like this:

A function to perform the transformation as a matrix multiplication

def model(pars, X):

return np.matmul(np.array([[1.0,0.0,pars[0]],

[0.0,1.0,pars[1]],[0.0,0.0,1.0]]),[X[0], X[1], 1.0])

A function to estimate the residual, multiplied by the weights

3See https://scipy-cookbook.readthedocs.io/items/robust_regression.html for a discussion on the loss function.

5

https://scipy-cookbook.readthedocs.io/items/robust_regression.html

def fun(pars, X, Y, X_err):

return np.dot(1.0/(X_err*X_err),

np.sqrt((model(pars,X)[0]-Y[0])**2 + (model(pars,X)[1]-Y[1])**2))

Set starting point

x0 = (0.0,0.0)

The call to least_squares

res = least_squares(fun, x0, loss=’cauchy’,

bounds=(-5, 5), args=([xi_csc2,eta_csc2],[xi_gaia,eta_gaia],csc2_err), verbose=1)

The use of the Cauchy loss function also allows for most robustness in the case of crowed fields, where
it is most likely to have ambiguous matches between CSC and either Gaia or ALLWISE.

An additional consideration: although the cross matching is performed to find all Gaia (or ALLWISE)
matches within 3” of each stack detection, for a given stack we can typically find enough of these matches
that are within 1” of the stack detection. Therefore in the algorithm below we start by first counting
the number of matches in the three ranges (0” − 1”), (1” − 2”)m and (2” − 3”), and then selecting the
range that has at least 4 matches and that also has the smallest standard deviation of the separation
between matches. Only sources in the selected range will be used to perform the transformation. This
approach ensures that there will be less serendipitous matches, while at the same time it will also allow
us to identify stacks for which the shift is larger than 1”.

To estimate the probability of finding serendipitous matches in crowded fields, let us look at stack
acisfJ1115042m611530_001, in NGC 3603, which is the CSC 2.0 stack with the largest number of
CSC/Gaia matches (2848). For this stack, in the most crowded region, the typical separation between
CSC detections is about 2”, whereas the typical separation between Gaia sources is about 1”, but the
typical distance between matching CSC/Gaia detections is close to 0.2”. Given a good set of matching
detections between the two surveys, what is the probability of finding exactly the same matches (within a
similar tolerance of 0.2”) if a translation of more than 1” between surveys is performed? This probability
would be close to 1 if the separation between Gaia sources (rG) in the field was close to the 0.2” tolerance,
and decreases as 1/r2G as the separation between sources increases. So, since there is a factor of 5 between
separation (1”) and tolerance (0.2”), we estimate this probability to be of less than 0.04.

5.4 Two-step transformation

Depending on the environment of a stack (for example, on whether the stack in question corresponds to a
galactic or extragalactic field), one can find more valid matches for the CSC detections in the ALLWISE
catalog than in the Gaia catalog. For those stacks that have more valid matches with ALLWISE than they
have Gaia, a two-step translation allows to find a transformation between CSC and Gaia coordinates via
an intermediate dataset, i.e., the ALLWISE point source catalog. The basic idea is simple: the resulting
translation is found by combining two independent translations: one between Gaia and ALLWISE
coordinates (T1) and one between ALLWISE and CSC coordinates (T2). T1 and T2 are found using
the same WLS formulation described in the previous sections. The only difference for T1 is that since
an independent matching has been performed between Gaia and ALLWISE sources as part of DR2, no
cross-matching is needed to find potential corresponding pairs. The coordinates are obtained directly
from the respective tables, after checking against the gaiadr2.allwise_best_neighbors table.

For a given stack, a T1 translation is found by running the WLS approach with the default param-
eters (Cauchy loss, error weighting) using the ALLWISE coordinates as the source list and the Gaia
coordinates as a target list. Because no significant PSF smearing happens for WISE, we are not con-
strained to limit the search for Gaia/ALLWISE matches to within 10 arcminutes of the stack centroid.
This transformation is likely to be possible for almost all of the CSC stacks, as there is a large enough
number of matches between Gaia and ALLWISE all over the sky, as shown in Fig. 2.

Similarly, a T2 translation is found by running the WLS approach with the default parameters using
the CSC coordinates as the source list, and the ALLWISE coordinates as the target list. The final

6

transformation T is found by multiplying these two translations:αcorr

δcorr
1

 = T2T1

α0

δ0
1

 (7)

5.5 Algorithm

The end-to-end workflow for the fine astrometry correction is as follows. We separate the algorithm into
a Gaia alone section, and a Gaia+ALLWISE two-step transformation section. The decision on whether
a two-step translation is required should be done based on a comparison of the total number of valid
matches between CSC and Gaia, and between CSC and ALLWISE.

5.5.1 Input

The pipeline is run per stack. For each stack, the inputs to the pipeline are:

• csc-table: For each stack, a table of stack detections within a radius rstack of the stack centroid con-
taining the detection identifiers, coordinates, position errors, and all flags for each detection. The
coordinates of the tangent plane reference point (ra_stack and dec_stack) should also be available.
We default rstack = 10 arcmin, but the specific value should be a pipeline parameter. Detections
that are flagged for saturation (sat_src_flag=TRUE) should be excluded. Specifically, detections
for which o.sat_src_flag = 1 for any of the contributing observations should be excluded. Stack
detections corresponding to convex hull centroids should also be excluded. Manually included de-
tections (man_inc=True) can be included as long as for the detection src_quality indicates that
the detection or true or marginal (no false detections should be included). The table should include
the following columns for each detection: detect_stack_id, s.region_id, ra_stack, dec_stack,
s.ra, s.dec, s.err_ellipse_r0, s.err_ellipse_r1, s.err_ellipse_ang.

• Gaia source density: For each stack, the density nGaia of Gaia sources within rstack should be
computed, and given in unit of sources per square arcminute.

• gaia-table: For each stack, a table with all the Gaia sources (from table gaiadr2.gaia_source)
within rstack of the stack centroid, including the source identifier (source_id), coordinates (ra, dec),
and proper motions in RA and DEC (pmra, pmdec). Gaia sources with radial proper motions
larger than 50 mas/yr should be excluded. To calculate the radial proper motion, pmra and
pmdec should be added in quadrature. The Gaia source catalog can be dowloaded at: http:

//cdn.gea.esac.esa.int/Gaia/gdr2/gaia_source/

• allwise-table: For each stack, a table with all the ALLWISE sources within rstack of the stack
centroid, including the source identifier (allwise_oid), coordinates (ra, dec), coordinate er-
rors (sigra, sigdec), and contamination and confusion flag (cc_flags). Only sources with
cc_flags=0 should be included. Sources whose corresponding match in the gaia-wise-table asocia-
tion table (gaiadr2.allwise_best_neighbors, se below) is a high proper motion source (> 50 mas/yr)
should also be excluded. Information for a bulk download of the ALLWISE tables can be found here:
http://wise2.ipac.caltech.edu/docs/release/allwise/expsup/sec1_5.html#bulk. Column
descriptions are found here: https://wise2.ipac.caltech.edu/docs/release/allwise/expsup/
sec2_1a.html

• ALLWISE source density: For each stack, the density nALLWISE of ALLWISE sources within rstack
should be computed, and given in unit of sources per square arcminute.

• gaia-wise-table: The full table of Gaia/ALLWISE associations (table gaiadr2.allwise_best_neighbors
from the DR2). It can be found here: https://gaia.aip.de/metadata/gdr2/allwise_best_

neighbour/

7

http://cdn.gea.esac.esa.int/Gaia/gdr2/gaia_source/
http://cdn.gea.esac.esa.int/Gaia/gdr2/gaia_source/
http://wise2.ipac.caltech.edu/docs/release/allwise/expsup/sec1_5.html#bulk
https://wise2.ipac.caltech.edu/docs/release/allwise/expsup/sec2_1a.html
https://wise2.ipac.caltech.edu/docs/release/allwise/expsup/sec2_1a.html
https://gaia.aip.de/metadata/gdr2/allwise_best_neighbour/
https://gaia.aip.de/metadata/gdr2/allwise_best_neighbour/

5.5.2 Deciding whether a two-step approach is preferred

.
The first decision to be made is whether the transformation will be done using the Gaia catalog

alone, or if the intermediate step using ALLWISE is required. So, for a given stack, determine this by
counting the total number of valid matches (within 3”) between the CSC detections of that stack, and
both the Gaia and ALLWISE catalogs.

1. Consider the csc-table and gaia-table tables. Perform a cross-match between the two tables to find
all valid Gaia sources within 3 arcseconds of each valid CSC stack detection. The total number of
matches found is nmatchGaia .

2. Now consider the csc-table and wise-table tables. Perform a cross-match between the two tables to
find all valid ALLWISE sources within 3 arcseconds of each valid CSC stack detection. The total
number of matches found is nmatchWISE .

3. If (nmatchGaia ≥ nmatchWISE) use the direct approach of §5.5.3. Otherwise, use the two-step approach
of §5.5.4.

5.5.3 Translation using Gaia alone

1. For each stack, consider the csc-table and gaia-table tables. Perform a cross-match between the
two tables to find all valid Gaia sources within 3 arcseconds of each valid CSC stack detection.
Include all matches, even if they are ambiguos (i.e., even if more than one Gaia source matches
the relevant CSC detection).

2. Divide the matches in three groups according to their separation rmatch:

• Group 1: rmatch such that 0” < rmatch ≤ 1”.

• Group 2: rmatch such that 1” < rmatch ≤ 2”.

• Group 3: rmatch such that 2” < rmatch ≤ 3”.

3. For each group i:

• Define nmatch,i as the total number of CSC detections with at least one match.

• For each match pair j in group i, consider the component separation (in sky coordinates) in
both spatial dimensions ∆xj and ∆yj .

• Calculate the standard deviation of ∆xj and of ∆yj over all pairs in group i. These are
σGaia,x,i and σGaia,y,i.

• Estimate the quantity σGaia,i =
√
σGaia,x,i ∗ σGaia,y,i

4. For the next steps, use only the group i that has at least three matches (nmatch,i ≥ 3) and that has
the lowest σGaia,i. If none of the groups has at least 3 matches, then use the one with the largest
nmatch,i, regardless of the standard deviation values, unless there is a tie, in which case add the
condition that the group should have the smallest σGaia,i.

5. Coordinates should be input in units of arcseconds, not degrees or hour angles, and should be the
standard coordinates (ξ, η) resulting from reprojecting (RA,DEC) onto the plane tangent to the
stack reference position (ra_stack, dec_stack). Starting from the coordinates (RA,DEC) for
the detection in decimal degrees, first perform the following transformations for both the coordi-
nates and the coordinate errors:

c1 = SkyCoord(ra=ra_csc2*u.deg, dec=dec_csc2*u.deg, frame=’icrs’)

xi_csc2_1 = (cos(c1.dec.rad)*sin(c1.ra.rad - ra_stack_rad))

/(sin(c1.dec.rad)*sin(dec_stack_rad)

+cos(c1.dec.rad)*cos(dec_stack_rad)

8

*cos(c1.ra.rad - ra_stack_rad))

xi_csc2 = 3600.*xi_csc2_1*(180./pi)

eta_csc2_1 = (sin(c1.dec.rad)*cos(dec_stack_rad)

-cos(c1.dec.rad)*sin(dec_stack_rad)

*cos(c1.ra.rad - ra_stack_rad))

/(sin(c1.dec.rad)*sin(dec_stack_rad)

+cos(c1.dec.rad)*cos(dec_stack_rad)

*cos(c1.ra.rad - ra_stack_rad))

eta_csc2 = 3600.*eta_csc2_1*(180./pi)

c2 = SkyCoord(ra=ra_gaia*u.deg, dec=dec_gaia*u.deg, frame=’icrs’)

xi_gaia_1 = (cos(c2.dec.rad)*sin(c2.ra.rad - ra_stack_rad))

/(sin(c2.dec.rad)*sin(dec_stack_rad)

+cos(c2.dec.rad)*cos(dec_stack_rad)

*cos(c2.ra.rad - ra_stack_rad))

xi_gaia = 3600.*xi_gaia_1*(180./pi)

eta_gaia_1 = (sin(c2.dec.rad)*cos(dec_stack_rad)

-cos(c2.dec.rad)*sin(dec_stack_rad)

*cos(c2.ra.rad - ra_stack_rad))

/(sin(c2.dec.rad)*sin(dec_stack_rad)

+cos(c2.dec.rad)*cos(dec_stack_rad)

*cos(c2.ra.rad - ra_stack_rad))

eta_gaia = 3600.*eta_gaia_1*(180./pi)

where ra_stack_rad and dec_stack_rad are the stack’s tangent plane reference coordinates, in
radians.

If the stack contains coordinates that cross the 24 hour angle line (i.e., if it contains detections in
both sides of this line), then prior to this step add 360.0 to the RA in decimal degrees for all sources
with RA < 12h. This should be done for all CSC detections, as well as all Gaia and ALLWISE
sources.

6. The resulting array of CSC coordinates is the ”source” list for in the WLS approach, while the
resulting array of Gaia coordinates is the ”target” list.

7. The coordinates should be stored in individual arrays, namely xi_csc2, eta_csc2, xi_gaia,
eta_gaia2.

8. Compute the circular approximation of the CSC position errors to use as the vector of weights for
WLS:

w = [1/(r0r1), 1/(r0r1)]

where r0 and r1 are the semi-major and semi-minor axes of the position error ellipses. Save the
resulting vector as variable w.

9. Run the WLS approach with the resulting coordinates and errors:

A function to perform the transformation as a matrix multiplication

def model(pars, X):

9

return np.matmul(np.array([[1.0,0.0,pars[0]],

[0.0,1.0,pars[1]],[0.0,0.0,1.0]]),[X[0], X[1], 1.0])

A function to estimate the residual, multiplied by the weights

def fun(pars, X, Y, weights):

return np.dot(weights, np.sqrt((model(pars,X)[0]-Y[0])**2

+ (model(pars,X)[1]-Y[1])**2))

Set starting point

x0 = (0.0,0.0)

The call to least_squares

res = least_squares(fun, x0, loss=’cauchy’,

bounds=(-5, 5), args=([xi_csc2,eta_csc2], [xi_gaia,eta_gaia], w),

verbose=1)

10. The translations in ξ and η are stored in res.x and res.y. Apply the transformation to the input
CSC coordinates by multiplying the resulting translation matrix T with the vector of coordinates
(ra_csc_arcsec,dec_csc_arcsec, 1) for each detection, and store the translation parameters
for the stack.

11. If nmatch,i < 10, and the density of Gaia sources nGaia in the current stack is larger than 100
sources per square arcminute, then flag the stack for manual QA and continue.

5.5.4 Two-step translation

1. For each stack, consider the csc-table and allwise-table tables. Perform a cross-match between
the two tables to find all valid ALLWISE sources within 3 arcseconds of each valid CSC stack
detection. Include all matches, even if they are ambiguos (i.e., even if more than one ALLWISE
source matches the relevant CSC detection)

2. Divide the matches in three groups according to their separation rmatch:

• Group 1: rmatch such that 0” < rmatch ≤ 1”.

• Group 2: rmatch such that 1” < rmatch ≤ 2”.

• Group 3: rmatch such that 2” < rmatch ≤ 3”.

3. For each group i:

• Define nmatch,i as the total number of CSC detections with at least one match.

• For each match pair j in group i, consider the component separation (in sky coordinates) in
both spatial dimensions ∆xj and ∆yj .

• Calculate the standard deviation of ∆xj and of ∆yj over all pairs in group i. These are
σWISE,x,i and σWISE,y,i.

• Estimate the quantity σWISE,i =
√
σWISE,x,i ∗ σWISE,y,i

4. For the next steps, use only the group that has at least three matches (nmatch,i ≥ 3) and that has
the lowest σWISE,i. If none of the groups has at least 3 matches, then use the one with the largest
nmatch,i, regardless of the standard deviation values, unless there is a tie, in which case add the
condition that the group should have the smallest σWISE,i.

5. Coordinates should be input in units of arcseconds, not degrees or hour angles, and should be the
standard coordinates (ξ, η) resulting from reprojecting (RA,DEC) onto the plane tangent to the
stack reference position (ra_stack, dec_stack). Starting from the coordinates (RA,DEC) for
the detection in decimal degrees, first perform the following transformations for both the coordi-
nates and the coordinate errors:

10

c1 = SkyCoord(ra=ra_csc2*u.deg, dec=dec_csc2*u.deg, frame=’icrs’)

xi_csc2_1 = (cos(c1.dec.rad)*sin(c1.ra.rad - ra_stack_rad))

/(sin(c1.dec.rad)*sin(dec_stack_rad)

+cos(c1.dec.rad)*cos(dec_stack_rad)

*cos(c1.ra.rad - ra_stack_rad))

xi_csc2 = 3600.*xi_csc2_1*(180./pi)

eta_csc2_1 = (sin(c1.dec.rad)*cos(dec_stack_rad)

-cos(c1.dec.rad)*sin(dec_stack_rad)

*cos(c1.ra.rad - ra_stack_rad))

/(sin(c1.dec.rad)*sin(dec_stack_rad)

+cos(c1.dec.rad)*cos(dec_stack_rad)

*cos(c1.ra.rad - ra_stack_rad))

eta_csc2 = 3600.*eta_csc2_1*(180./pi)

c2 = SkyCoord(ra=ra_wise*u.deg, dec=dec_wise*u.deg, frame=’icrs’)

xi_wise_1 = (cos(c2.dec.rad)*sin(c2.ra.rad - ra_stack_rad))

/(sin(c2.dec.rad)*sin(dec_stack_rad)

+cos(c2.dec.rad)*cos(dec_stack_rad)

*cos(c2.ra.rad - ra_stack_rad))

xi_wise = 3600.*xi_wise_1*(180./pi)

eta_wise_1 = (sin(c2.dec.rad)*cos(dec_stack_rad)

-cos(c2.dec.rad)*sin(dec_stack_rad)

*cos(c2.ra.rad - ra_stack_rad))

/(sin(c2.dec.rad)*sin(dec_stack_rad)

+cos(c2.dec.rad)*cos(dec_stack_rad)

*cos(c2.ra.rad - ra_stack_rad))

eta_wise = 3600.*eta_wise_1*(180./pi)

where ra_stack_rad and dec_stack_rad are the stack’s tangent plane reference coordinates, in
radians.

If the stack contains coordinates that cross the 24 hour angle line (i.e., if it contains detections in
both sides of this line), then prior to this step add 360.0 to the RA in decimal degrees for all sources
with RA < 12h. This should be done for all CSC detections, as well as all Gaia and ALLWISE
sources.

6. The resulting array of CSC coordinates is the ”source” list for the WLS transformation, while the
resulting array of ALLWISE coordinates is the ”target” list.

7. The coordinates should be stored in individual arrays, namely xi_csc2, eta_csc2, xi_wise,
eta_wise2.

8. Compute the circular approximation of the CSC position errors:

σCSC = r0 × r1

where r0 and r1 are the semi-major and semi-minor axes of the position error ellipses.

9. Compute the circular approximation of the ALLWISE position errors (also in arcseconds):

σWISE = sigra× sigdec

11

where sigra and sigdec are the errors for the detection from the ALLWISE table.

10. Add these two errors in quadrature:

σtot =
√
σ2
CSC + σ2

WISE

11. Compute the final vector of weights as:

w = [1/σtot, 1/σtot]

where the operation is computed element-wise. Save the resulting vector of weigths as w.

12. Run the WLS approach with the resulting coordinates and erros:

A function to perform the transformation as a matrix multiplication

def model(pars, X):

return np.matmul(np.array([[1.0,0.0,pars[0]],

[0.0,1.0,pars[1]],[0.0,0.0,1.0]]),[X[0], X[1], 1.0])

A function to estimate the residual, multiplied by the weights

def fun(pars, X, Y, weights):

return np.dot(weights, np.sqrt((model(pars,X)[0]-Y[0])**2

+ (model(pars,X)[1]-Y[1])**2))

Set starting point

x0 = (0.0,0.0)

The call to least_squares

res = least_squares(fun, x0, loss=’cauchy’,

bounds=(-5, 5), args=([xi_csc2,eta_csc2], [xi_wise,eta_wise], w), verbose=1)

13. The translations in ξ and η are stored in res.x and res.y. Apply the transformation to the input
CSC coordinates by multiplying the resulting translation matrix T1 with the vector of coordinates
(ra_csc_arcsec,dec_csc_arcsec, 1) for each detection, and store the translation parameters
(T1) for the stack.

14. If nmatch,i < 10, and the density of ALLWISE sources nWISE in the current stack is larger than 100
sources per square arcminute, then flag the stack for manual QA and continue.

15. Now independently compute the Gaia/ALLWISE transformation. The gaiadr2.allwise_best_neighbors
table will be needed.

16. Identify all ALLWISE source identifiers and coordinates in allwise-table, which should contain
sources within 10 arcminutes of the stack centroid.

17. Find the Gaia identifier associated with each ALLWISE identifier in table
gaiadr2.allwise_best_neighbors. If more than one Gaia source is listed as a best neighbor,
then ignore the association. This is, keep only one-to-one associations.

18. Retrieve the coordinates and position errors of each associated ALLWISE source from the ALL-
WISE source catalog (allwise-table)

19. Run the WLS approach with the resulting coordinates and errors (in this case, the ALLWISE errors
only):

12

A function to perform the transformation as a matrix multiplication

def model(pars, X):

return np.matmul(np.array([[1.0,0.0,pars[0]],

[0.0,1.0,pars[1]],[0.0,0.0,1.0]]),[X[0], X[1], 1.0])

A function to estimate the residual, multiplied by the weights

def fun(pars, X, Y, weights):

return np.dot(weights, np.sqrt((model(pars,X)[0]-Y[0])**2

+ (model(pars,X)[1]-Y[1])**2))

Set starting point

x0 = (0.0,0.0)

The call to least_squares

res = least_squares(fun, x0, loss=’cauchy’,

bounds=(-5, 5), args=([xi_wise,eta_wise], [xi_gaia,eta_gaia], w_WISE), verbose=1)

Store the resulting translation parameters in matrix form in T2

20. Find the final solution translation by multiplying T = T2T1, and store the result as the solution
for the current stack.

5.5.5 Stacks with no matches

In the unlikely event of a stack having no Gaia or ALLWISE matches for any of the CSC detections, no
correction is possible. Flag the stack for manual QA.

5.5.6 Transform the coordinates back to decimal degrees

After the solution translation has been applied to the CSC coordinates for each stack, the updated
coordinates in arcseconds should be transformed back to decimal degrees. In order to do so, the inverse
transformations in Eq. 5 should be applied a this point.

5.5.7 Estimating source absolute position uncertainties

.
The astrometric corrections derived from the stack astrometry pipeline will be used to update the

master level absolute errors for CSC sources once all source positions have been corrected as part of this
stack astrometry pipeline. At the stack level, the MLE-derived errors will be kept, without modifica-
tion. The reason is that for a significant fraction of the stacks, we will not have enough Gaia-CSC or
ALLWISE -CSC matches to estimate a reliable astrometric error at the stack level. However, an statis-
tical analysis over all master level sources should provide enough information to estimate the updated
astrometry uncertainty that comes from errors in the aspect solution, calibration, determination of guide
star positions, etc.

In order to determine the total absolute astrometric error for CSC sources, the same procedure that
was used in CSC 2.0 by cross-matching CSC 2.0 master sources with SDSS sources will be employed
here, but using Gaia as the reference positions instead of SDSS. The procedure is described here:

https://cxc.harvard.edu/csc/memos/files/Rots_CSC2AstrometricError.pdf

This procedure will be performed by the science team and will result in a single astrometric error
value added in quadrature to the MLE-derived errors for all master level sources. The uncertainties will
be updated in the database with a post-processing migration.

13

https://cxc.harvard.edu/csc/memos/files/Rots_CSC2AstrometricError.pdf

5.6 Storing translation matrices in the archive

Transformation matrices (which in the case of translation-only transformation are diagonal matrices)
should be archived in the asol file for each stack. A way to do this is by storing the matrices in a xfm3
file, which can be added as an HDU extension of the stack-level asol file. For those stacks requiring two
transformations, both matrices should be stored.

After the transform has been created and stored, then it has to be applied to the stacks. How this
is done in CSC 2.1 processing will be different depending on whether we are processing a new stack or
updating existing data from release 2.0. The way in which this will be done is currently TBD, but in
the implementation it should happen at this stage of the pipeline.

Below is a list of files that need to be updated with the resulting updated WCS coordinates. Note
that, because the transformation will be translation only, we do not expect a change in the ROLL angles.

Per-ObsId products

EVT3 - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

ECORRIMG - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

ECORRIMG_JPG - Inherit from updated ECORRIMG

BKGIMG - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

EXPMAP - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

ASPSOL3 - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present),

ASPSOL:ra,dec; add the applied transform (i.e., translation only) as a new HDU STKXFM

following the XFM HDU and using the same format

BADPIX3 - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

FOV3 - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

PIXMASK - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

POLY3 - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

SEXPMAP - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

Per-ObsId source region data products

REGEVT3 - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

REGIMG - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

REGIMG_JPG - Inherit from updated REGIMG

PSF/BINPSF - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

PSF_JPG - Inherit from updated PSF

REGEXPMAP - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

SPECTRUM - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

ARF - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

RMF - Nothing needs to be updated

LIGHTCURVE - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

ECF90REG<BAND> - Update WCS (EQSRC), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

ECF90REG<BAND> should have an EQSRC descriptor populated with WCS information

DRAWS - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present),

SRCDRAWS:ra,dec

APERPHOT - Nothing needs to be updated

Headers do not include standard coordinate information (RA*/DEC*/ROLL* keywords are missing)

Stack products

STKEVT3 - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

STKECORRIMG - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

STKECORRIMG_JPG - Inherit from updated STKECORRIMG

STKBKGIMG - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

STKEXPMAP - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

STKFOV3 - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

SENSITY - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

MRGSRC - Update WCS (EQSRC), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present),

SRCLIST:ra,dec, SRCFIT:detect_{ra|dec},src_{ra|dec}_<band>, ext_{ra|dec}_<band>,

14

WAVSRC:RA,DEC,wav<n><band>_{ra|dec},MPNTSRC:RA,DEC,MEXTSRC:CENTER_{RA|DEC},

NO_DETECT:RA,DEC

THETAMEAN - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

Stack source region data products

STKREGEVT - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

STKREGIMG - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

STKREGIMG_JPG - Inherit from updated STKREGIMG

STKREGIMG3_JPG - Inherit from updated STKREGIMG

STKREGEXP - Update WCS (EQPOS), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present),

SRCREG/BKGREG - Update WCS (EQSRC), all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

EQSRC is not correctly populated with WCS information

STKDRAWS - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present),

SRCDRAWS:ra,dec

STKAPERPHOT - Nothing needs to be updated

Headers do not include standard coordinate information (RA*/DEC*/ROLL* keywords are missing)

Master source data products

BAYESBLKS - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

Needs a header scrub

SRCAPERPHOT - Update all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

Needs a header scrub

SRCPOLY3 - Update WCS, all RA_*/DEC_*/ROLL_* header keywords as well as RA_TARG/DEC_TARG (if present)

Needs a header scrub

5.7 QA cases and procedure

QA should be triggered in the following three situations:

• Density too high: If the density of reference sources in the current stack is larger than 100 sources
per square arcminute.

• Shift too large: If the resulting total shift of coordinates is larger than 1 arcsecond.

• Too few matches: If there are less than 3 matches, as long as any of the following conditions is also
met:

– There are no CSC sources with an off-axis angle smaller than 5 arcminutes.

– There are no sources with more than 15 counts.

– The total shift applied is more than 0.5 arcsec.

5.7.1 Procedure

The operator should be able to visualize in DS9 post stamp images of all CSC stack detections with
Gaia matches, with a crosshair mark centered on the Gaia source positions. For crowded fields, only a
maximum of 20 detections should be visualized. The operator should be able to blink between the image
before and after the correction (with the crosshair mark fixed), to see if the translation did reduce the
distance between CSC detection and Gaia sources for most of the detections. If the operator determines
that this is not the case, the operator must select the matches that he/she considers most reliable and
the WLS approach should be repeated with the selected matches. The process should allow for several
iterations.

5.7.2 Flags

Sources in stacks that are processed in QA should be assigned an additional flag in the database. Other
flags will be needed in the database. These are currently TBD.

15

6 Tests

We have thoroughly tested the approach proposed here using all of the ∼ 7200 stacks currently contained
in version 2.0 of the CSC. We prepared the input tables as described in § 5.1, except for reducing the
number of matches in very crowded stacks, and ran the algorithm following the steps described in the
previous section. Here we show the results of these tests and evaluate them based on the following
criteria, as per the scientific requirements:

• The distributions of RA and DEC shifts resulting from the transformation matrices should not be
much larger than 1-2 arcseconds, as the relative error in position for each stack is smaller than that
amount, and the larger between-stack error is of the order of 2.5 arcseconds.

• Overall, the coordinate differences of stack detections with the Gaia reference frame should be
smaller or stay the same after the conversion.

• The between-stack differences in coordinates of stacks should be reduced, in particular for the
outlying cases.

• The approach should be able to process most of the stacks automatically. No more than about 600
stacks should require manual processing.

6.1 Translation with Gaia only

We ran the WLS approach with all stacks that had at least 5 Gaia matches within 1” of the CSC
detections. The results for the coordinate shifts are shown in Figure 3. The distribution is symmetric
and has a mean close to −0.15”. A few stacks have translations that are beyond the 2σ level, and those
should be inspected manually.

6.2 Between-stack correction

A number of CSC2 stacks have significant differences in coordinates despite the fact that they overlap
with each other. We should ensure that the between-stack differences in coordinates are significantly
reduced. We identified a number of these stacks and checked their coordinates both before and after the
correction. For the majority of cases, the between-stack differences were reduced. For a fraction of them
no statistically significant improvement was achieved, but those are typically stacks that already agree
between them at the level of the CSC2 accuracy. Only a very small fraction of these cases resulted in a
larger between-stack coordinate difference. The latter are typically related with faulty transformations
that give large rotations or scale factors, or with stacks having too few sources. These will all be sent to
a manual quality accuracy control process.

In Fig. 4 we show a few examples of the between-stack correction. Not surprisingly the ones with
larger differences prior to the correction tend to be in crowded Chandra fields that have many overlapping
stacks.

7 Code

Below is a transcription of the code used for tests. This code as well as other dependencies to run the
steps described in § 5.5 is located at:

\data\L3\rafael\stack_astrometry\

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from astropy.table import Table

from astropy.io import fits

from astropy import units as u

from astropy.coordinates import SkyCoord

16

from scipy.optimize import least_squares

Read table of sources within 10 arcmins of each stack center

dat = Table.read(’/Users/juan/L3/fine_astrometry/data/matches_new_v1.fits’, format=’fits’)

Turn into dataframe

df = dat.to_pandas()

List of all stacks

stacks = np.unique(df[’detect_stack_id’].values)

Read tables of GAIA and ALLWISE matches for those sources within 3 arcsecs

gaia_matches = Table.read(’/Users/juan/L3/fine_astrometry/data/gaia_new.fits’, format=’fits’)

wise_matches = Table.read(’/Users/juan/L3/fine_astrometry/data/wise_new.fits’, format=’fits’)

Select matches within 3" and convert to dataframes

df_gaia = gaia_matches.to_pandas()

df_gaia = df_gaia[df_gaia[’Separation’]<3.0*0.0002777777]

df_gaia = df_gaia[df_gaia[’pmra’]>-50]

df_gaia = df_gaia[df_gaia[’pmra’]<50]

df_gaia = df_gaia[df_gaia[’pmdec’]>-50]

df_gaia = df_gaia[df_gaia[’pmdec’]<50]

df_wise = wise_matches.to_pandas()

Group by stack id

g = df.groupby([’detect_stack_id’])

Placeholders

xi_shifts = []

eta_shifts = []

shifts = []

diffs_xi_0 = []

diffs_eta_0 = []

diffs_xi_1 = []

diffs_eta_1 = []

for st in stacks:

print(’Attempting ’,st)

Select stacks with 5 matches or more

if len(g.get_group(st)) >= 5:

df_sub = g.get_group(st)

df_merged = pd.merge(df_gaia, df_sub, on=[’name’], how=’inner’)

if (len(df_merged)>=5):

Tangent plane reference coordinates

ra_stack_rad = df_merged[df_merged[’detect_stack_id_x’]==st][’ra_stack’].values*(np.pi/180.)

dec_stack_rad = df_merged[df_merged[’detect_stack_id_x’]==st][’dec_stack’].values*(np.pi/180.)

The coordinates are input as arrays in units of arcseconds

17

ra_csc2 = df_merged[df_merged[’detect_stack_id_x’]==st][’ra_STACK_1’].values

dec_csc2 = df_merged[df_merged[’detect_stack_id_x’]==st][’dec_STACK_1’].values

ra_gaia = df_merged[df_merged[’detect_stack_id_x’]==st][’ra_cone’].values

dec_gaia = df_merged[df_merged[’detect_stack_id_x’]==st][’dec_cone’].values

c1 = SkyCoord(ra=ra_csc2*u.deg, dec=dec_csc2*u.deg, frame=’icrs’)

Get standard coordinates

xi_csc2 = (np.cos(c1.dec.rad)*np.sin(c1.ra.rad - ra_stack_rad))/(np.sin(c1.dec.rad)*np.sin(dec_stack_rad)

+ np.cos(c1.dec.rad)*np.cos(dec_stack_rad)

*np.cos(c1.ra.rad - ra_stack_rad))

eta_csc2 = (np.sin(c1.dec.rad)*np.cos(dec_stack_rad)

- np.cos(c1.dec.rad)*np.sin(dec_stack_rad)*np.cos(c1.ra.rad - ra_stack_rad))/(np.sin(c1.dec.rad)*np.sin(dec_stack_rad)

+ np.cos(c1.dec.rad)*np.cos(dec_stack_rad)*np.cos(c1.ra.rad - ra_stack_rad))

xi_csc2 = 3600.*xi_csc2*(180./np.pi)

eta_csc2 = 3600.*eta_csc2*(180./np.pi)

Same for Gaia

c2 = SkyCoord(ra=ra_gaia*u.deg, dec=dec_gaia*u.deg, frame=’icrs’)

Get standard coordinates

xi_gaia = (np.cos(c2.dec.rad)*np.sin(c2.ra.rad - ra_stack_rad))/(np.sin(c2.dec.rad)*np.sin(dec_stack_rad)

+ np.cos(c2.dec.rad)*np.cos(dec_stack_rad)

*np.cos(c1.ra.rad - ra_stack_rad))

eta_gaia = (np.sin(c2.dec.rad)*np.cos(dec_stack_rad)

- np.cos(c2.dec.rad)*np.sin(dec_stack_rad)*np.cos(c2.ra.rad - ra_stack_rad))/(np.sin(c2.dec.rad)*np.sin(dec_stack_rad)

+ np.cos(c2.dec.rad)*np.cos(dec_stack_rad)*np.cos(c2.ra.rad - ra_stack_rad))

xi_gaia = 3600.*xi_gaia*(180./np.pi)

eta_gaia = 3600.*eta_gaia*(180./np.pi)

Issue a warning if there are less than 5 matches

if (len(xi_csc2)<=5):

print(’WARNING: this stack has 5 or less matches: ’, st)

few_srcs.append(st)

Get arrays of coordinates for source coordinates and target coordinates

positions_src = []

for pos in zip(xi_csc2, eta_csc2):

positions_src.append(pos)

positions_src = list(positions_src)

positions_trgt = []

for pos in zip(xi_gaia, eta_gaia):

positions_trgt.append(pos)

positions_trgt = list(positions_trgt)

def model(pars, X):

return np.matmul(np.array([[1.0,0.0,pars[0]],[0.0,1.0,pars[1]],[0.0,0.0,1.0]]),[X[0], X[1], 1.0])

18

def fun(pars, X, Y, X_err):

return np.dot(1.0, np.sqrt((model(pars,X)[0]-Y[0])**2 + (model(pars,X)[1]-Y[1])**2))

initial guess

x0 = (0.0,0.0)

csc2_err = np.random.normal(0, 0.2, size=(2, len(xi_gaia)))

res = least_squares(fun, x0, loss=’cauchy’, bounds=(-10, 10), args=([xi_csc2,eta_csc2],[xi_gaia,eta_gaia], csc2_err), verbose=1)

print (" linear fit ",res.x)

xi_shifts.append(res.x[0])

eta_shifts.append(res.x[1])

new_xi = xi_csc2 + res.x[0]

new_eta = eta_csc2 + res.x[1]

diff_xi_0 = xi_gaia - xi_csc2

diff_eta_0 = eta_gaia - eta_csc2

diff_xi_1 = xi_gaia - new_xi

diff_eta_1 = eta_gaia - new_eta

diffs_xi_0.append(diff_xi_0)

diffs_eta_0.append(diff_eta_0)

diffs_xi_1.append(diff_xi_1)

diffs_eta_1.append(diff_eta_1)

19

List of Figures

1 The distribution of the number of stack detections for all of the CSC 2.0 stacks 21
2 A histogram of Gaia/ALLWISE matches for a large subset of CSC stacks. In all of the

cases, at least 200 matches are available for the transformation, within 10 arcminutes of
the stack centroid. 22

3 Corrections in ξ and η (in arcseconds) for a sub sample of CSC2 stacks for which the WLS
translation approach was used. 23

4 Correction in the coordinates of stacks that overlap, after the triangulation transformation
has been applied. Shown are stacks acisfJ0658299m555730/acisfJ0658351m555811 (top),
and stacks acisfJ0658299m555730/acisfJ0659003m555413 (bottom). They are all in the
region of the cluster of galaxies ClG 0657-56. 24

20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log (# detections within 10 arcmin)

0

200

400

600

800

Figure 1: The distribution of the number of stack detections for all of the CSC 2.0 stacks

21

Figure 2: A histogram of Gaia/ALLWISE matches for a large subset of CSC stacks. In all of the cases,
at least 200 matches are available for the transformation, within 10 arcminutes of the stack centroid.

22

Figure 3: Corrections in ξ and η (in arcseconds) for a sub sample of CSC2 stacks for which the WLS
translation approach was used.

23

Figure 4: Correction in the coordinates of stacks that overlap, after the triangulation transformation
has been applied. Shown are stacks acisfJ0658299m555730/acisfJ0658351m555811 (top), and stacks
acisfJ0658299m555730/acisfJ0659003m555413 (bottom). They are all in the region of the cluster of
galaxies ClG 0657-56.

24

	Motivation
	General goal
	Requirements
	Weighted Least Squares
	Implementation for CSC fine stack astrometry
	Preparing the datasets
	Proper motion considerations
	Parametrization and implementation of the WLS translation
	Two-step transformation
	Algorithm
	Input
	Deciding whether a two-step approach is preferred
	Translation using Gaia alone
	Two-step translation
	Stacks with no matches
	Transform the coordinates back to decimal degrees
	Estimating source absolute position uncertainties

	Storing translation matrices in the archive
	QA cases and procedure
	Procedure
	Flags

	Tests
	Translation with Gaia only
	Between-stack correction

	Code

