Introduction to X-ray Astronomy

Jonathan McDowell Center for Astrophysics

jcm@cfa.harvard.edu

We are now in the era of multiwaveband astronomy

Sources of X-rays

- Shock waves in plasma (ionized gas)
- "Synchrotron" caused by energetic particles in magnetic fields (like a natural particle accelerator)
 - Energy release from gravity ("accretion" power)

Explosions: Supernovae and their remnants

Particles moving near the speed of light in magnetic fields

Matter falling into deep gravitational wells

Powerful sources of X-rays

...and much more efficient

The Chandra X-ray Observatory

Launched 26 years ago 23 July 1999 A revolution in X-ray astronomy and astronomy in general

Chandra

- Highest-spatial-resolution X-ray telescope
- Launched July 1999 still doing great science!
- Operated by the Chandra X-ray Center (Cambridge, MA, USA) includes support for worldwide users.
 - Our goal is to make it easy for "non X-ray" astronomers to get science done with Chandra

5 tonne spacecraft in 1411 x 147395 km x 38.5 deg orbit Cameras:

ACIS (Advanced CCD Imaging Spectrometer) HRC (High Resolution Camera)

Chandra Detectors and Gratings

ACIS: Advanced CCD Imaging Spectrometer

- Most Chandra observations use ACIS
- 10 x 1 Mpix chips, use any 4 (caveats)
- Sub arcsecond imaging on axis
- Each chip is 8 x 8 arcmin
- Spectrum in each pixel ~0.5-7 keV

HRC-I and HRC-S: High Resolution Camera

- Microchannel plate, highest spatial and timing resolution but no spectral resolution

HETG: High Energy Transmission Grating

- Disperses spectrum onto ACIS
- Two gratings, HEG and MEG, at an angle to each other
- Order sorting possible via CCD energy discrimination

LETG:Low Energy Transmission Grating

- Disperses spectrum onto HRC-S or ACIS
- Single dispersed spectrum
- Orders superimposed

What Chandra can do

- Deep searches for photometry and astrometry of faint point sources
 - ACIS Imaging Mode (ACIS-I or ACIS-S)
 - ACIS-S slightly superior in low energy response, but not much to choose from these days
 - ACIS-I has bigger field of view
- Integral field spectroscopy of bright extended sources
 - ACIS-I FOV is 16' x 16' (but spatial resn degrades off-axis)
 - Each pixel has spectral resolution R about 50-100
 - Background per pixel is low
- High resolution spectroscopy of bright point sources
 - HETG (High Energy Transmission Grating)
 - Resolution E/dE = 1000 at 1 keV
 - Energy range 0.4-10 keV
 - Measure equivalent widths, line centers

A sampling of Chandra science..

- I will concentrate on results from the ACIS X-ray CCD imager
- Lots of great results from high resolution transmission gratings, addressed in a later talk

Cas A – fresh elements

Green: continuum shock

Red: silicon line

Blue: iron line

Hwang et al 2004

M33 – compact populations

X-ray binaries Supernova remnants Hot gas in HII regions

McDowell et al 2002, Grimm et al 2005

Nearby galaxies in the X-rays

LMXBs (low mass X-ray binaries) trace the older population. Roche Lobe overflow of MS star HMXBs (high mass X-ray binaries) the current star formation. Wind capture from supergiant

These are mostly $log(Lx/erg/s) \sim 35$ to 38 ULX (ultraluminous X-ray sources, log(Lx)>=39) are still a bit mysterious – mixture of beamed jets and intermediate-mass black holes?

Merging galaxies

Arp 220 – merging galaxy McDowell et al 2003

> Shocked hot gas at 1-10 million degrees Hot gas in starbursts Ultraluminous X-ray binaries

Background galaxy cluster: hot gas

AGNs with Jets

PKS 0637-75 -Chandra first focus image

PKS 1127-145 -Siemiginowska, Bechtold

Accretion onto supermassive black holes

Relativistic particle jets

Pictor A - Wilson

Active Galactic Nuclei

The X-rays in AGN come from gas close to the black hole. We can detect emission from iron atoms: the Fe Kalpha flourescence line. Its spectral shape is distorted by the effects of general relativity!

M87 (Messier 87) Virgo A

Chandra Deep Field North

Accretion onto supermassive black holes....

lots and lots of them!

Bauer, Brandt, Hornschemeier, etc 2002-2005 Evolution of AGN

Galactic nuclear activity was much more common, and extreme, in the past. There are many more high-luminosity quasars seen at z=2 than today

Credit: W. Keel

Clusters of galaxies

Bullet cluster: merging pair of clusters Red: X-rays (hot gas) superimposed on visible-light image of galaxies

X-ray Data Analysis

Data processing

Standard dataset calibration

Flare removal

Background map

Source detection

For each source region, we calculate the spatial exposure variation and run our ray trace code to get a model PSF.

0 0

Spectral

⁸⁰ analysis

2

4

6 8

Chandra Source Catalog

- Release 2.0 contains 317167 X-ray sources in data public prior to 2014
- 1 arcsecond absolute astrometry
- X-ray photometry in 3 bands (0.5-1.2, 1.2-2.0, 2.0-7.0 keV)
- Associated data products

X-ray Analysis Software

- CIAO (cxc.harvard.edu) SAO/MIT general analysis package, optimized for Chandra, strong in spatial analysis
 - dmcopy, acis_process_events, sherpa
- HEASOFT (heasarc.gsfc.nasa.gov) Goddard general purpose X-ray package
 - fdump, xselect, xspec
- SAS (xmm.vilspa.esa.es) Specific to XMM-Newton
- ROSAT era collaboration established common FITS standards for keywords and data file conventions

CIAO is: Free and open source Runs on Linux or Mac [NOT Windows] Full install about 9 Gbyte including calibration data

Command line unix tools working on FITS files

Extensively documented!!

The Fundamental Equation of Astronomy:

We observe the sky – a field of incoming light which varies with celestial lon/lat x,y, time t and energy E

S(x,y,t,E)

[n.b. Energy, wavelength, frequency, color interchangeable]

Our telescope/instrument/data pipeline gives us a signal as a function of **instrumental** position, time, energy N(x',y',t',E') The observation multiplies S with a sensitvity ("Effective Area") A and convolves (smears) it with the observational response R

 $N(x',y',t',E') = \int S(x,y,t,E) A(x,y,t,E)R(x,y,t,E,x',y',t',E') dx dy dt dE$

Our game is to invert this integral (we want S but we have N). Usually we assume R is separable into (x,y), t, E parts

The spatial response is called the POINT SPREAD FUNCTION (PSF)

- how much does a starlike point get smeared in the image?

The energy response is called the LINE SPREAD FUNCTION (LSF) or, in low spectral resolution X-ray astronomy, the REDISTRIBUTION MATRIX FUNCTION (RMF)

- how much does a monochromatic color get smeared in energy space?

The sensitivity curve in X-ray astronomy is called the EFFECTIVE AREA (Aeff)

It is the geometric area of the telescope aperture times an efficiency factor (which depends on x,y,t,E)

Introduction to X-ray Data Analysis

- X-ray astronomy is different ...
 - **Problem 1:** Photon counting with small number statistics
 - Problem 2: Spectral line spread function is often broad and messy - forced to foward-folding approach
 - Problem 3: Bands are very broad, so energy (wavelength) dependence more obvious (e.g. in PSF)
 - Problem 4: Different optics PSF degrades rapidly off axis
 - Problem 5: The telescope is not pointing steadily like, say, HST - it's moving back and forth across the source.
 - [~] But:
 - Advantage: We have more information on each photon (position, energy, arrival time)

Complexities in X-Ray and Chandra Data Analysis

Complexities in X-Ray and Chandra Data Analysis

The Chandra PSF

Basics of CIAO

Data files are in FITS format (usually binary tables, not just images) FITS: Flexible Image Transport System (1979-present)
CIAO can also operate on ASCII files in many cases
All (well, almost all) CIAO tools that want an input file can accept a CIAO Data Model "virtual file" e.g instead of evt.fits take "evt.fits[energy=300:1000,sky=circle(4096,4096,20)]"

Each file (dataset) is made up of sections called 'blocks' (HDUs for FITS fans) Blocks can be tables or images

Key tools: dmcopy infile outfile dmlist infile opt=blocks,cols,data

Key applications: Sherpa - fitting ds9 – imaging and analysis (also Prism, now within ds9: file explorer)

The Event File

- In optical astronomy, the primary data set is an image.
- In radio interferometry, it's a visibility array.
- In X-ray astronomy, the primary data set is an event list a table of (putative) photons
 - Our software makes it easy to generate an image from the event list, so it's easy to forget that's what you have. But making the image loses information.
 - First cut way of thinking about the event list: it's a 4-dimensional array of x, y, time, energy. But most pixels are empty (we don't have many photons!) so it's more compact to just list the non-empty ones.
 - Complication: we actually have many more parameters for each photon, not just 4.

Inside the event list

jupiter> dmlist acisf03041_001N001_evt3.fits cols

Columns for Table Block EVENTS

ColNo	Name	Unit	Туре	Range	
1	time	S	Real8	154361559.612729996	4:154436827.4158599973 S/C TT corresponding to mid-exposure
2	ccd_id		Int2	0:9	CCD reporting event
3	node_id		Int2	0:3	CCD serial readout amplifier node
4	expno		Int4	0:2147483647	Exposure number of CCD frame containing event
5	chip(chipx,chipy)	pixel	Int2	1:1024	Chip coords
6	<pre>tdet(tdetx.tdety)</pre>	pixel	Int2	1:8192	ACIS tiled detector coordinates
7	det(detx,dety)	pixel	Real4	0.50: 8192.50	ACIS detector coordinates
8	sky(x,y)	pixel	Real4	0.50: 8192.50	sky coordinates
9	pha	adu	Int4	0:36855	total pulse height of event
10	pha_ro	adu	Int4	0:36855	total read-out pulse height of event
11	energy	eV	Real4	0: 1000000.0	nominal energy of event (e¥)
12	pi	chan	Int4	1:1024	pulse invariant energy of event
13	fltgrade		Int2	0:255	event grade, flight system
14	grade		Int2	0:7	binned event grade
15	status[4]		Bit(4)		event status bits

jupiter> dmlist acisf03041_001N001_evt3.fits"[cols -status]" data,raw,clean rows=1:20															
# time	ccd_id node_id expno chip(chipx,chipy) tdet(tdetx,tdety) det(detx,dety)					sky(x,y)			pha	pha_ro energy		pi	fltgrade grade		
154362662.7665936351	0	1	107	369 513	3574 4763	3540,2504882812	1556,8157958984	1473,2664794922	4129,1977539062	3868	3680	15358,6318359375 102	4 16	4	
154362662.7665936351	0	2	107	562 589	3650 4570	3615,2900390625	1748,9260253906	1676.4797363281	4093,9599609375	3977	3750	15254,2246093750 102	4 64	2	
154362662,7665936351	0	0	107	247 876	3937 4885	3902,1516113281	1435,5321044922	1426,5589599609	3750,3830566406	3765	3514	14473,1611328125 99	2 0	0	
154362662.8076336384	7	0	107	189 301	4106 2003	4069,4038085938	4313,6518554688	4280,3339843750	4160,218750	3568	3503	15899.1279296875 1024	11	6	
154362662.8076336384	7	1	107	264 388	4181 2090	4144,4223632812	4225,7763671875	4209,175781250	4069,1887207031	128	109	632,9125366211 44	72	6	
154362662,8076336384	7	2	107	555 410	4472 2112	4435.0400390625	4204,0610351562	4245,8291015625	3780.0749511719	1717	1702	7969,5327148438 54	6 8	3	
154362662.8076336384	7	2	107	676 441	4593 2143	4556.0268554688	4172.6386718750	4239.1547851562	3655.2526855469	1908	1853	8829,906250 60	5 16	4	
154362662,8076336384	7	1	107	483 465	4400 2167	4363,3208007812	4149,5029296875	4178,0693359375	3839,4790039062	1011	994	4767,4877929688 32	7 2	2	
154362662.8076336384	7	3	107	881 613	4798 2315	4760,8256835938	4001,3994140625	4112,1772460938	3420,4289550781	1348	1310	6024,1176757812 41	30	0	
154362662.8076336384	7	2	107	690 834	4607 2536	4569,7802734375	3780,8713378906	3857,9919433594	3563,6794433594	2011	1942	9294,6806640625 63	7 72	6	
154362662,8076336384	7	1	107	348 925	4265 2627	4228,7290039062	3689,4941406250	3700,4628906250	3879,6706542969	1722	1664	8069,8139648438 55	32	2	
154362662.8076336384	7	1	107	502 954	4419 2656	4381,6430664062	3660,5825195312	3702,6135253906	3724,0622558594	3011	2957	14100.3310546875 96	5 208	6	
154362662.8486736417	6	3	107	803 548	3678 2250	3639,6469726562	4066,6665039062	3952.636718750	4532,1162109375	2258	2095	8640.0263671875 592	2	2	
154362662,8897136450	3	0	107	40 717	4415 3101	4376,0224609375	3215,3222656250	3265,1691894531	3640,8110351562	3146	2950	12326,56250 84	5 0	0	
154362662.8897136450	3	0	107	78 901	4231 3139	4192,5224609375	3177,2634277344	3191,2951660156	3813,0412597656	2252	2077	8826,3281250 60	5 64	2	
154362662,9307536483	2	0	107	208 240	3301 3878	3266.0554199219	2440,0964355469	2284,2392578125	4573,9658203125	3451	3423	13226,7988281250 90	6 16	4	
154362662.9307536483	2	2	107	517 719	3780 3569	3744,8583984375	2748,1215820312	2681,5275878906	4166.1748046875	3816	3544	14376,746093750 98	5 64	2	
154362662.9717936218	1	0	107	101 567	4565 4208	4527,886718750	2109,5788574219	2211,8908691406	3271,5732421875	1644	1543	6498,9438476562 446	64	2	
154362662,9717936218	1	3	107	996 952	4180 5103	4141,839843750	1216,6264648438	1259,9039306641	3471,8693847656	2406	2170	9509,4218750 652	16	4	
154362666,0075938106	0	2	108	683 156	3217 4449	3183,1049804688	1869,4627685547	1709.3774414062	4541,6933593750	3466	3429	13290,0634765625 91	L 0	0	

Energy slices through an event list

Each ACIS observation is not a 2D image – it has time and energy dimensions.

Here is part of obsid 869 showing energy slices through the data

Spatial binning of 4

Made by (e.g.):

dmcopy evt2.fits"[energy=4000:6000][bin x=3600:4600:4,y=3600:4600:4]" img.fits

Level 1 Event List - Calibrated but Dirty

Bad pixels

Level 2 event list - cleaned and filtered

Energy filter 300-7000 eV removes background but not signal Grade filter removes cosmic ray events etc Good time filter removes times of high background, poor data quality

Sources fuzzy far off axis (PSF big)

The aspect solution

During an observation, Chandra's optical axis describes this 'dither pattern' on the sky, (Problem 5), smearing the image of a point source. The RA, Dec, roll angle of the telescope versus time is called the 'aspect solution'; the asol1.fits file provides this for each observation.

We record the motion of the guide stars in the star tracker so that we can calculate RA and Dec for EACH PHOTON and so reconstruct the image.

Chandra aspect-corrected data

This is what you get after calibration but before cleaning the data. Note the sharp point sources near the center.

Chandra raw (chip) data

In instrument space, the photons are spread out over 20 arcsec and have bad columns going through them - so be careful of the effective exposure time. If you didn't dither, you could lose the source entirely if it landed on a bad pixel

Typical exposure map

Problem 3: Exposure map is energy dependent; must assume a spectrum if using a broad band

Event analysis or binned analysis?

- Don't make an image too quickly. If you can get an answer directly from the event list, that's better binning the data loses information, and collapsing the axes loses information.
- Spatial analysis: make an image (using dmcopy)

lose energy and time information

• Spectral analysis: make a 'PHA file' using dmextract (or a grating spectrum using tgextract)

lose spatial and time information

• Temporal analysis: make a light curve using dmextract

The Fundamental Equation of Astronomy again:

$$N(x',y',t',E') = \int S(x,y,t,E) A(x,y,t,E)R(x,y,t,E,x',y',t',E') dx dy dt dE$$

Integrate over dx dy over a region that contains almost all the PSF (and estimate correction factor P for fraction outside) Assume R is independent of t over observing time T Then

Spectra in Poissonland

$$N(p) = \int R(E, p) A(E) F(E) dE$$

We pick a parameterized F(E) such as warm absorber models, lines, thermal plasma codes. Which F(E)? You must pick one based on expected physics, but match number of free parameters with quality of data.

With less than 100 counts, we usually just use count ratios (X-ray colors) for spectral analysis.

Does one model fit significantly better than another? Be careful that two physically different models may look quite similar in F(E) space.

Incompletely calibrated instrumental features may show up in residuals, limiting factor in high S/N spectra – these features may include edges. Beware apparent science in regions where A(E) is changing rapidly.

Sherpa: Modeling and Fitting in Python

Modeling and fitting for 1-D and 2-D datasets **in any waveband** including: spectra, images, surface brightness profiles, light curves, general ASCII data.

Model Poisson and Gaussian data

Calculate confidence levels on the best-fit model parameters

Coded in a

environment -

familiar to the new generation of astronomers

and used in

other missions

Python

Sherpa: Modeling and Fitting in Python

Sherpa

- comes with well-tested, robust optimization methods e.g. Levenberg-Marquardt, Nelder-Mead Simplex or Monte Carlo/Differential Evolution
- comes with statistics for modeling Poisson or Gaussian data
- can perform Bayesian analysis with Poisson Likelihood and priors, using Metropolis or Metropolis-Hastings algorithm in the MCMC (Markov-Chain Monte Carlo); allows to include nonlinear systematic errors (calibration uncertainties) in the analysis
- is extensible (with python and compiled code):
 - is used in CIAO tools and scripts
 - in the Xija Chandra thermal modeling code
 - is used in the TeV HESS data analysis software
 - is used in the IRIS spectral energy distribution program

CALDB

- The CALDB (Calibration Database) contains everything you need that's not part of your specific observation.
- It's designed as a multimission directory structure. The Chandra files are in \$CALDB/data/chandra
- Within that, they are arranged by instrument and kind of calibration. But, with luck, the software will find the CALDB files you need automatically.
- Just make sure that you keep the CALDB up to date! But, be careful if you start off
 processing with a given version of the CALDB and CIAO, then upgrade to a new
 CALDB and CIAO, things are sometimes incompatible. Check the release notes.

Calculating Source Flux

Your Chandra Observation 801589 Inbox ×

arcops@head.cfa.harvard.edu

to jcm, arcops 💌

Dear Dr. McDowell,

This message is to let you know that your observation SeqNum 801589, ObsId 18265 is available for downloading by you by going to the following web page:

http://cda.harvard.edu/chaser/obsRetrieveEntry.do?obsid=18265

Please log in using the following account information:

Username: Password:

Untarring the data will create a directory

18265

in the current directory, containing a small directory tree with the data.

Note that only the primary and/or secondary data products are available for download and that there may be defects in these data products; please consult the V&V report.

download chandra obsid 18265 Is 18265; Is 18265/primary

andromeda> 1s 18265

00README axaff18265N003 VV001 vv2.pdf oif.fits primary/ secondary/

andromeda> ls 18265/primary

acisf18265N003 cntr img2.fits.gz_acisf18265N003 evt2.fits.gz acisf18265N003_cntr_img2.ipg andromeda> 🛙

acisf18265N003 full img2.jpg

acisf18265 000N003 fov1.fits.gz acisf18265N003 full img2.fits.gz acisf18265 000N003 bpix1.fits.gz orbitf605707505N001 eph1.fits.gz

reprocess

pcadf18265_000N001_asol1.fits.oz

chandra repro 18265 ls 18265 ls 18265/repro

andromeda> ls 18265

00README axaff18265N003_VV001_vv2.pdf oif.fits primary/ repro/ secondary/ andromeda> 1s 18265/repro

acisf18265_000N003_bpix1.fits acisf18265_000N003_msk1.fits acisf18265_000N003_stat1.fits acisf18265_repro_bpix1.fits acisf18265_repro_flt2.fits acisf605870200N002_pbk0.fits acisf18265 000N003 fov1.fits acisf18265 000N003 mtl1.fits acisf18265 asol1.lis acisf18265_repro_fov1.fits pcadf18265_000N001_asol1.fits acisf18265 repro evt2.fits andromeda> 🛛

evt file

cd 18265/repro In -s acis18265 repro evt2.fits evt dmcopy "evt[energy=300:8000]" evt03.80 ds9 evt03.80 &

lazy! # broad band

asol file

This observation was made with 2 chips (5&7). Each chip had only the central 512 rows read out to reduce pileup. Looks like something interesting at the lower left, let's zoom in

We can certainly see the quasar which was my target Can you see the slight fuzz to the left of it? This looks like a job for adaptive smoothing dmcopy "evt[energy=500:1200][bin x=3800:4312,y=3800:4312]" red dmcopy "evt[energy=1200:2000][bin x=3800:4312,y=3800:4312]" green dmcopy "evt[energy=2000:7000][bin x=3800:4312,y=3800:4312]" blue

csmooth red red.s sigmin=2.5 sigmax=3 sclmin=2 sclmax=10 csmooth green green.s sigmin=2.5 sigmax=3 csmooth blue blue.s sigmin=2.5 sigmax=3

dmimg2jpg red.s green.s blue.s rgb.jpg scalefunc=log scaleparam=3

display rgb.jpg

Yep, there's really something there!

Use the jpg to define a region, extracting counts from the original data

specextract evt[sky=region(neb.reg) nspec bkg="evt[sky=region(bg.reg)]"
grouptype=NUM_CTS binspec=15 weight=yes
sherpa

- > load_pha("nspec_grp.pi")
- > subtract()
- > notice(0.5,7.0)
- > plot data()

Use Sherpa commands to fit the model and look at # contours of chi-sq in parameter space

```
set_source(xsphabs.a*(xsapec.r+gauss1d.g))
fit()
plot_fit_resid()
reg_proj(r.kt,r.Abundanc,min=(1,0.2),max=(6,5),nloop=(40,40)
```

We have a result! Cluster temperature is about 3 keV

dmcopy "evt[energy=500:1200][bin x=3800:4312,y=3800:4312]" red dmcopy "evt[energy=1200:2000][bin x=3800:4312,y=3800:4312]" green dmcopy "evt[energy=2000:7000][bin x=3800:4312,y=3800:4312]" blue

csmooth red red.s sigmin=2.5 sigmax=3 sclmin=2 sclmax=10 csmooth green green.s sigmin=2.5 sigmax=3 csmooth blue blue.s sigmin=2.5 sigmax=3

dmimg2jpg red.s green.s blue.s rgb.jpg scalefunc=log scaleparam=3

display rgb.jpg

Yep, there's really something there!

McDowell et al 2021 ApJ 919, 22

Summary 1 - Science

- Chandra's high resolution delivers unique science
- X-ray background resolved into AGN
- Spectral and spatial studies of SNR reveal the different histories of ejecta, shocks, jets
- Galaxy and cluster studies giving census of compact objects, reveal ULX sources, galacto-ecological role of hot ISM
- X-ray jets are common in AGN
- I haven't talked about the grating results

Summary 2 - Analysis

- X-ray telescopes drift while observing, so the pixels in your image are not the instrumental pixels
- When you publish a source with only 3 photons, make sure you understand the background.
- Instrumental properties tend to vary with both off-axis angle and energy and often with time
- The X-ray way: forward folding
- BUT: X-ray missions have high quality calibrated data in their archives and we all use the same data formats ---> the learning curve is not too bad, and great science to be done
- The catalog makes it even easier to use X-ray data and provides the first astrometric all-sky (but not complete) catalog at high energies.