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Outline

❖ Why bother?

❖ What to bother about

❖ errors, uncertainties, and appropriateness

❖ detection, fitting :: deciding, estimating

❖ Where CIAO/Sherpa is doing the bothering for you
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–Mark Twain, Life on the Mississippi

In the space of one hundred and seventy-six years the Lower Mississippi has 
shortened itself two hundred and forty-two miles. Therefore, any calm person, who 
is not blind or idiotic … can see that seven hundred and forty-two years from now 

the lower Mississippi will be only a mile and three-quarters long. 

There is something fascinating about science. One gets such wholesale returns of 
conjecture out of such a trifling investment of fact.
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Lessons from Sam Clemens

❖ Generalization is the foundational cornerstone of science, especially of 
astronomy, and it is trivially easy to shoot yourself in the foot

❖ It is easy to run into situations where fluctuations can ruin an observation, or 
you push your model of the Universe too far into realms where it is not 
applicable

❖ We must pay attention to errors and uncertainties in the data, on the quality 
of the models we build to explain them, and how we make decisions and 
draw inferences
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Why astrostatistics?
❖ Measurement error is a fact of life

❖ Interpretation of observations needs a model

❖ Characterizing a model from measurements requires a great 
deal of logical and rigorous thinking 
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Why astrostatistics?
❖ Measurement error is a fact of life

❖ Interpretation of observations needs a model

❖ Characterizing a model from measurements requires a great 
deal of logical and rigorous thinking 

❖ Astrostatistics is a system to

• quantify uncertainty 

• extend inference to complex systems

• make decisions
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Error bars
❖ Invented by Gauss while figuring out where Ceres would reappear after coming around the Sun:

❖ Measurement uncertainties follow a "normal" distribution, with deviations being symmetrical, large 
discrepancies being less frequent, and the average represents the likely value

©Ainali/wikipedia
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Error bars
❖ Invented by Gauss while figuring out where Ceres would reappear after coming around the Sun:

❖ Measurement uncertainties follow a "normal" distribution, with deviations being symmetrical, large 
discrepancies being less frequent, and the average represents the likely value

❖ Lets you fit a simplified model curve to the data by minimizing the squared deviations of residuals

©Ainali/wikipedia
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Error propagation : Gaussian
❖ How to propagate uncertainty from one stage to another — if , and  is known, what is  =?= 

❖ Simple case: if everything is distributed as a Gaussian, and has well-defined means and standard 
deviations, then at "best fit" values , 

 for all data points k=1..N and independent variables i 

and expand as Taylor series and sum over k to get to the 2nd order  

 where i, j are variables 

or ignoring correlations amongst the  

g = f(x) σx σg f(σx)

ai g = g(ai)

σ2
g = ∑

i

1
N ∑

k

(gk(ai + δai) − gk(ai))2

σ2
g = ∑

i
∑

j

∂g
∂ai

∂g
∂aj

σaiaj

{ai}, σaiaj
= σ2

ai
δij

σ2
g ≈ ∑

i ( ∂g
∂ai )

2

σ2
ai
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Error propagation : Examples

 g = g(ai)

σ2
g = ∑

i ( ∂g
∂ai )

2

σ2
ai
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Error propagation : Examples
 g = C ⋅ a → σg = C ⋅ σa
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Error propagation : Examples
 g = C ⋅ a → σg = C ⋅ σa

uncertainties scale (counts → count rate) 

g = ln(a) → σg =
σa

a
converts to fractional error (luminosity → magnitude)

        g =
1
a

→ σg =
1
a2

σa ≡
g
a

σa ⇒
σg

g
=

σa

a
fractional errors stay as they are (parallax → distance)

g = a + b → σ2
g = σ2

a + σ2
b

errors square-add

 g = g(ai)

σ2
g = ∑

i ( ∂g
∂ai )

2

σ2
ai
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Uncertainty intervals
❖ Equal tail

❖ Highest density (also 
the shortest interval)

❖ "1σ" ⇒ 68% ≡ 

16th−84th percentile

❖ 5th−95th ≡ 90% ≡ 1.6σ

❖ 2.5th−97.5th ≡ 95% ≡ 2σ

❖ "3σ" ⇒ p=0.003

©Ainali/wikipedia
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Distributions
A distribution is described by a mathematical function, but is not simply a locus of points.  It 
describes probabilities of sampling, of possible results of repeated experiments.  Also describes 
the likelihood of seeing the observed data given the particular model parameter values 
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Distributions {X} ∼ f(θ) 
∫ dθ f(θ) = 1

A distribution is described by a mathematical function, but is not simply a locus of points.  It 
describes probabilities of sampling, of possible results of repeated experiments.  Also describes 
the likelihood of seeing the observed data given the particular model parameter values 
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Distributions

Gaussian:   N(x; μ, σ) =
1

σ 2π
e− (x − μ)2

2σ2

Poisson:     P(X = k; λ) =
1
k!

λke−λ

Gamma:     γ(x; α, β) =
βα

Γ(α + 1)
⋅ xαe−xβ

Delta:          for x ≠ x0, and ∫ dx δ(x–x0) = 1δ(x − x0) = 0

{X} ∼ f(θ) 
∫ dθ f(θ) = 1

A distribution is described by a mathematical function, but is not simply a locus of points.  It 
describes probabilities of sampling, of possible results of repeated experiments.  Also describes 
the likelihood of seeing the observed data given the particular model parameter values 
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p-values, false +ves, and false –ves
❖ p-value: the tail 

integral of a 
distribution

❖ False +ve ≡ Type I 
error: the p-value at 
which a threshold is 
set for a null 
distribution

❖ False –ve ≡ Type II 
error: the fraction of 
the alternate 
distribution that falls 
below the threshold
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Detection and Estimation
An observation that falls in the tail of the null distribution where the p-value is small enough 
that the risk of false +ve is deemed acceptable
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Detection and Estimation
An observation that falls in the tail of the null distribution where the p-value is small enough 
that the risk of false +ve is deemed acceptable

110 counts

140 counts in 9× area

⇒ 95±11 counts from source

19 counts

Estimate source strength as
Net = NS-NB/B

σNet = √{NS+NB/B²}

110-140/9=95
√(110+140/81)=11

Detect the existence of a source by 
checking the p-value for the 
background distribution
p=Pr(NB/B ≥ NS)

=1 – ∑K=0,NS (NB/B)K e–NB/B/K!

1 – 0.842 = 0.158 
≫ typical threshold p

13

⇒ not detected

⇒ 15 counts in source area
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❖ The best fit is one that maximizes the likelihood

❖ e.g., linear regression — yi = α + βxi + ϵ

solve by finding extremum of log likelihood (for Gaussian case, maximizing likelihood means 
minimizing sum-squared residuals)

, with ln L ∝ ∑
k

(yk − α − βxk)2 ∂ ln L
∂α

=
∂ ln L

∂β
= 0

,  and  ̂β = Cov(x, y)/Var(x) ≡ ρ(x, y)
Var(x)
Var(y)

α̂ = ȳ − ̂βx̄
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❖ The best fit is one that maximizes the likelihood

❖ e.g., linear regression — yi = α + βxi + ϵ

solve by finding extremum of log likelihood (for Gaussian case, maximizing likelihood means 
minimizing sum-squared residuals)

, with ln L ∝ ∑
k

(yk − α − βxk)2 ∂ ln L
∂α

=
∂ ln L

∂β
= 0

,  and  ̂β = Cov(x, y)/Var(x) ≡ ρ(x, y)
Var(x)
Var(y)

α̂ = ȳ − ̂βx̄

Notice notation: 

b̅a̅r̅ and ĥât ̂to indicate sample averages and best-fit values

Γρεεκ letters for model quantities, Roman for data quantities



Fitting: Error Bars
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Fitting: Error Bars
❖ Covariance errors aka curvature errors 

aka inverse of the Hessian 

For Gaussian,   

i.e., compute curvature of log-likelihood 
surface at best fit and return its inverse as 
the variance 

+ easy, obtained as byproduct of fitting 

– sensitive to fluctuations 

– invariably underestimated

∂2 ln LGauss

∂x2
∝

1
σ2
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Fitting: Error Bars
❖ Covariance errors aka curvature errors 

aka inverse of the Hessian 

For Gaussian,   

i.e., compute curvature of log-likelihood 
surface at best fit and return its inverse as 
the variance 

+ easy, obtained as byproduct of fitting 

– sensitive to fluctuations 

– invariably underestimated

∂2 ln LGauss

∂x2
∝

1
σ2

❖ Δχ² 

Difference from best-fit χ² value is itself a 
χ² distribution with dof=1, so look for 
percentiles of that distribution:  

Δχ²=+1 ≡ 68% (1σ) 

Δχ²=+2.71 ≡ 90% (1.6σ) 

+ more robust than curvature 

– gets complicated if parameters are 
correlated 

– higher computational cost
15
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❖ How good is the model as a description of your data?

❖ How can you tell when you do have a “good” fit?
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Fitting: Goodness-of-fit
❖ How good is the model as a description of your data?

❖ How can you tell when you do have a “good” fit?

❖  is called the chi-square,−2 ln LGauss

χ2 = ∑
k

(xk − μk)2

σ2
k

❖ and its distribution describes the probability of getting  to match 
“similarly” for several bins

(xk, yk)

❖ When the observed , the model is doing a good job of matching 
the data.  The farther it is from this range, the less likely it is that the model is 
a good description of the data

χ2 ∼ dof ± 2 ⋅ dof

❖ But always use your judgement, because this is a probabilistic rule!

❖ Watch out for how  is defined (model variance is better)σ2
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Fitting: cstat
❖ Recall Poisson log Likelihood:  

❖
χ² is , cstat is  

cstat  

where  are observed counts, and  are model predicted counts in bin i and 
Saturated Poisson means λ is set to k, or a model where Mi is set to Di.  cstat can also 
be derived as an approximate form of the LPois, using Stirling’s approximation for Γ(⋅) 

❖ Watch out: cstat is only asymptotically χ², not quite the Poisson likelihood, 0s 
are thrown away, background must be explicitly modeled 

❖ unbiased for low counts compared to χ², asymptotically χ², rudimentary 
goodness-of-fit exists (Kaastra 2017, A&A 605, A51) 
[AnetaS] https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/cstat_vs_chisq_SimsNotebook.ipynb  

[AnetaS] https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/data_for_cstat_vs_chisq_SimsNotebook.tar.gz 

ln LPois = − ln Γ(k + 1) + k ln λ − λ

−2 ln LGauss −2 ln
LPois

LSaturated Pois

= 2∑
i

Mi − Di + Di ⋅ (ln Di − ln Mi)

Di Mi
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Handbook of X-ray Astronomy (Arnaud, Smith, Siemiginowska): https://doi.org/10.1017/CBO9781139034234.008

https://doi.org/10.1017/CBO9781139034234.008


Statistical Tools in CIAO/Sherpa
❖ fit: non-linear minimization fitting

❖ conf/covar: uncertainty intervals and error bars

❖ resample_data: to get bootstrap distribution of model parameter draws when data errors are asymmetric

❖ bootstrap/sample_flux/sample_photon_flux/sample_energy_flux: with replacement/parametric bootstrap to get 
Monte Carlo distribution accounting for parameter uncertainties 

❖ get_draws: Markov Chain Monte Carlo (MCMC) engine pyBLoCXS (Bayesian Low-Counts X-ray Spectral analysis; van 
Dyk et al. 2001, ApJ 548, 224) 

❖ calc_mlr, calc_ftest: model comparison via Likelihood Ratio Test (LRT)/F-test

❖ plot_pvalue, plot_pvalue_results: to do posterior predictive p-value checks (Protassov et al. 2002, ApJ 571, 545) 

❖ glvary: light curve modeling (Gregory & Loredo 1992, ApJ 398, 146)  

❖ celldetect/wavdetect/vtpdetect/mkvtpbkg: source detection in images 

❖ aprates: Bayesian aperture photometry also used in srcflux (Primini & Kashyap 2014, ApJ 796, 24) 

❖ the python interpreter in Sherpa gives access to python libraries, and can be used to call upon packages and libraries in R, 
which are written by statisticians for statisticians
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Statistics is a tool; it can be misused
❖ "All models are wrong, but some are useful." — George Box, c.1987 

❖ Tak, H., et al., 2024, ApJS 275, 30 https://doi.org/10.3847/1538-4365/ad8440  — 
be aware of 

❖ where the data are coming from, what sort of filtering they have been subjected to 

❖ conditions under which a particular theorem is proven to be valid and make sure 
they apply under the scenario you are considering 

❖ assumptions made about the nature and range of model parameters and model 
complexity, and always do sanity checks and sensitivity analyses 

❖ limitations of hypothesis tests, and always consider the power of the tests and false 
detection rates
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Some useful reading material
❖ Larry Bretthorst (1988), Bayesian Fourier analysis, https://bayes.wustl.edu/glb/book.pdf

❖ Tom Loredo (1990), monograph on neutrinos from 87A, http://hosting.astro.cornell.edu/staff/loredo/bayes/L90-LaplaceToSN1987A-scan.pdf

❖ Babu & Feigelson (1996), Astrostatistics, https://www.routledge.com/Astrostatistics-1st-Edition/Babu-Feigelson-Morgan-Keiding-Van-der-Heijden/
p/book/9780412983917 

❖ Larry Wasserman (2006), All of Non-Parametric Statistics, http://www.stat.cmu.edu/~larry/all-of-nonpar/ 

❖ Rasmussen & Williams (2006), Gaussian Processes for Machine Learning, http://www.gaussianprocess.org/gpml/  

❖ Feigelson & Babu (2012), Modern Statistical Methods for Astronomy with R Applications, https://astrostatistics.psu.edu/MSMA/ 
❖ Arnaud, Smith, & Siemiginowska (2011), Handbook of X-ray Astronomy, http://hea-www.cfa.harvard.edu/~rsmith/xrayastronomyhandbook/

❖ Phil Gregory (2012), Bayesian Logical Data Analysis for Physical Sciences, https://www.cambridge.org/core/books/bayesian-logical-data-
analysis-for-the-physical-sciences/09E9A95DAE275F5B005676C71B542598  

❖ Gelman et al. (2013), Bayesian Data Analysis, https://www.routledge.com/Astrostatistics-1st-Edition/Babu-Feigelson-Morgan-Keiding-Van-der-
Heijden/p/book/9780412983917  

❖ Edward Robinson (2016), Data analysis for scientists and engineers, https://press.princeton.edu/titles/10911.html

❖ Vinay Kashyap (2020), Basics of Astrostatistics, https://iachec.org/wp-content/uploads/2021/05/Kashyap_2020_Tutorial_Guide_to_X-
ray_and_Gamma-ray_Astronomy_Data_Reduction_and_Analysis_Editor_Cosimo_Bambi_Springer_ISBN_978-981-15-6337-9_chapter_6-1.pdf

❖ Feigelson, Kashyap, Siemiginowska (2022), Time domain methods for X-ray and gamma-ray astronomy, https://arxiv.org/abs/2203.08996  

❖ Buchner & Boorman (2023), Statistical aspects of X-ray spectroscopy, https://arxiv.org/abs/2309.05705 
❖ Tak et al. (2024), Six Maxims of Statistical Acumen for Astronomical Data Analysis, ApJS 275, 30 https://doi.org/10.3847/1538-4365/

ad8440 
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