2025 May 20 : CIAO Workshop UMass Lowell

Source Detection & Statistics

VINAY KASHYAP CfA/CXC-Calibration

2025 May 20 : CIAO Workshop UMass Lowell

Basics of high-energy Astrostatistics

VINAY KASHYAP CfA/CXC-Calibration

- * Why bother?
- * What to bother about
 - * errors, uncertainties, and appropriateness
 - * detection, fitting :: deciding, estimating
- * Where CIAO/Sherpa is doing the bothering for you

Outline

In the space of one hundred and seventy-six years the Lower Mississippi has shortened itself two hundred and forty-two miles. Therefore, any calm person, who is not blind or idiotic ... can see that seven hundred and forty-two years from now the lower Mississippi will be only a mile and three-quarters long.

There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.

-Mark Twain, Life on the Mississippi

Lessons from Sam Clemens

- * Generalization is the foundational cornerstone of science, especially of astronomy, and it is trivially easy to shoot yourself in the foot
- * It is easy to run into situations where fluctuations can ruin an observation, or you push your model of the Universe too far into realms where it is not applicable
- We must pay attention to errors and uncertainties in the data, on the quality of the models we build to explain them, and how we make decisions and draw inferences

Why astrostatistics?

Why astrostatistics?

- * Measurement error is a fact of life
- * Interpretation of observations needs a model
- * Characterizing a model from measurements requires a great deal of logical and rigorous thinking

Why astrostatistics?

- * Measurement error is a fact of life
- Interpretation of observations needs a model
- * Characterizing a model from measurements requires a great deal of logical and rigorous thinking
- Astrostatistics is a system to
 - quantify uncertainty
 - extend inference to complex systems
 - make decisions

Error bars

- Invented by Gauss while figuring out where Ceres would reappear after coming around the Sun: *
 - Measurement uncertainties follow a "normal" distribution, with deviations being symmetrical, large * discrepancies being less frequent, and the average represents the likely value

Frror bars

- Invented by Gauss while figuring out where Ceres would reappear after coming around the Sun: *
 - Measurement uncertainties follow a "normal" distribution, with deviations being symmetrical, large * discrepancies being less frequent, and the average represents the likely value

Frror bars

- Invented by Gauss while figuring out where Ceres would reappear after coming around the Sun: *
 - Measurement uncertainties follow a "normal" distribution, with deviations being symmetrical, large * discrepancies being less frequent, and the average represents the likely value

Frror bars

Error bars

- * Invented by Gauss while figuring out where Ceres would reappear after coming around the Sun:
 - Measurement uncertainties follow a "normal" distribution, with deviations being symmetrical, large discrepancies being less frequent, and the average represents the likely value
 - * Lets you fit a simplified model curve to the data by minimizing the squared deviations of residuals

Error propagation : Gaussian

- Simple case: if everything is distributed as a Gaussian, and has well-defined means and standard * deviations, then at "best fit" values a_i , $g = g(a_i)$

$$\sigma_g^2 = \sum_i \frac{1}{N} \sum_k (g_k(a_i + \delta a_i) - g_k(a_i))^2 \text{ for all data p}$$

and expand as Taylor series and sum over k to get to the 2^{nd} order

$$\sigma_g^2 = \sum_i \sum_j \frac{\partial g}{\partial a_i} \frac{\partial g}{\partial a_j} \sigma_{a_i a_j}$$
 where *i*, *j* are variables

or ignoring correlations amongst the $\{a_i\}, \sigma_{a_i a_i} = \sigma_{a_i}^2 \delta_{ij}$

$$\sigma_g^2 \approx \sum_i \left(\frac{\partial g}{\partial a_i}\right)^2 \sigma_{a_i}^2$$

* How to propagate uncertainty from one stage to another — if g = f(x), and σ_x is known, what is $\sigma_g = f(\sigma_x)$

points k=1..N and independent variables i

 $g = g(a_i)$ $\sigma_g^2 = \sum_{i} \left(\frac{\partial g}{\partial a_i}\right)^2 \sigma_{a_i}^2$

uncertainties scale (counts \rightarrow count rate)

 $g = g(a_i)$ $\sigma_g^2 = \sum_i \left(\frac{\partial g}{\partial a_i}\right)^2 \sigma_{a_i}^2$

 $g = C \cdot a \rightarrow \sigma_g = C \cdot \sigma_a$

- $g = \ln(a)$
 - convert

 $g = g(a_i)$ $\sigma_g^2 = \sum_{i} \left(\frac{\partial g}{\partial a_i} \right)^2 \sigma_{a_i}^2$

 $g = C \cdot a \rightarrow \sigma_g = C \cdot \sigma_a$

uncertainties scale (counts \rightarrow count rate)

$$\rightarrow \sigma_g = \frac{\sigma_a}{a}$$
is to fractional error (luminosity \rightarrow magnitude)

- $g = \ln(a)$ $g = g(a_i)$ $\sigma_g^2 = \sum_i \left(\frac{\partial g}{\partial a_i}\right)^2 \sigma_{a_i}^2 \quad g = \frac{1}{a} \quad \rightarrow$
 - fraction

 $g = C \cdot a \rightarrow \sigma_g = C \cdot \sigma_a$

uncertainties scale (counts \rightarrow count rate)

$$\rightarrow \sigma_g = \frac{\sigma_a}{a}$$
s to fractional error (luminosity \rightarrow magnitude)

converts to fractional error (luminosity \rightarrow magnitude)

$$\Rightarrow \sigma_g = \frac{1}{a^2} \sigma_a \equiv \frac{g}{a} \sigma_a \implies \frac{\sigma_g}{g} = \frac{\sigma_a}{a}$$

al errors stay as they are (parallax \rightarrow distance)

- $g = \ln(a)$ $g = g(a_i)$ $\sigma_g^2 = \sum_i \left(\frac{\partial g}{\partial a_i}\right)^2 \sigma_{a_i}^2 \quad g = \frac{1}{a} \quad \rightarrow$ fraction
 - g = a + berrors s

 $g = C \cdot a \rightarrow \sigma_g = C \cdot \sigma_a$

uncertainties scale (counts \rightarrow count rate)

$$\rightarrow \sigma_g = \frac{\sigma_a}{a}$$
s to fractional error (luminosity \rightarrow magnitude)

converts to fractional error (luminosity \rightarrow magnitude)

$$\Rightarrow \sigma_g = \frac{1}{a^2} \sigma_a \equiv \frac{g}{a} \sigma_a \implies \frac{\sigma_g}{g} = \frac{\sigma_a}{a}$$

al errors stay as they are (parallax \rightarrow distance)

$$\rightarrow \sigma_g^2 = \sigma_a^2 + \sigma_b^2$$
quare-add
9

0.1%

μ-3σ

- * Equal tail
- * Highest density (also the shortest interval)

* "
$$1\sigma$$
" $\Rightarrow 68\% \equiv$

16th-84th percentile

- * $5^{\text{th}}-95^{\text{th}} \equiv 90\% \equiv 1.6\sigma$
- * $2.5^{\text{th}} 97.5^{\text{th}} \equiv 95\% \equiv 2\sigma$

* " 3σ " $\Rightarrow p=0.003$

A distribution is described by a mathematical function, but is not simply a locus of points. It describes probabilities of sampling, of possible results of repeated experiments. Also describes the *likelihood* of seeing the observed data given the particular model parameter values

A distribution is described by a mathematical function, but is not simply a locus of points. It describes probabilities of sampling, of possible results of repeated experiments. Also describes the *likelihood* of seeing the observed data given the particular model parameter values

A distribution is described by a mathematical function, but is not simply a locus of points. It describes probabilities of sampling, of possible results of repeated experiments. Also describes the *likelihood* of seeing the observed data given the particular model parameter values

Gaussian: $N(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

A distribution is described by a mathematical function, but is not simply a locus of points. It describes probabilities of sampling, of possible results of repeated experiments. Also describes the *likelihood* of seeing the observed data given the particular model parameter values

Gaussian:
$$N(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Poisson: $P(X = k; \lambda) = \frac{1}{k!}\lambda^k e^{-\lambda}$

A distribution is described by a mathematical function, but is not simply a locus of points. It describes probabilities of sampling, of possible results of repeated experiments. Also describes the *likelihood* of seeing the observed data given the particular model parameter values

Gaussian:
$$N(x; \mu, \sigma) = -\frac{1}{\sigma \sqrt{2}}$$

Poisson: $P(X = k; \lambda) = -\frac{1}{\beta}$
Gamma: $\gamma(x; \alpha, \beta) = -\frac{1}{\Gamma(\alpha)}$

A distribution is described by a mathematical function, but is not simply a locus of points. It describes probabilities of sampling, of possible results of repeated experiments. Also describes the *likelihood* of seeing the observed data given the particular model parameter values

Gaussian:
$$N(x; \mu, \sigma) = -\frac{1}{\sigma\sqrt{2}}$$
Poisson: $P(X = k; \lambda) = -\frac{1}{k}$ Gamma: $\gamma(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)}$ Delta: $\delta(x - x_0) = 0$ fo

 $\{X\} \sim f(\theta)$ $\int d\theta f(\theta) = 1$

or $x \neq x_0$, and $\int dx \, \delta(x - x_0) = 1$

- * *p*-value: the tail integral of a distribution
- * False +ve \equiv Type I error: the *p*-value at which a threshold is set for a *null* distribution
- * False –ve = Type II error: the fraction of the alternate distribution that falls below the threshold

0.30 $p(S|\lambda_{s}=0,\lambda_{B},r,\tau_{s},\tau_{B})$ 0.25 0.20 0.15 0.10 0.05 0.15 $p(S|\lambda_{S},\lambda_{B},r,\tau_{S},\tau_{B})$ 0.10 0.05

14

that the risk of false +ve is deemed acceptable

Orion Trapezium Star Forming Region

10 arcsec

An observation that falls in the tail of the null distribution where the *p*-value is small enough

that the risk of false +ve is deemed acceptable

Orion Trapezium Star Forming Region

10 arcsec

110 counts

An observation that falls in the tail of the null distribution where the *p*-value is small enough

that the risk of false +ve is deemed acceptable

Orion Trapezium Star Forming Region

10 arcsec

110 counts

140 counts in 9× area

An observation that falls in the tail of the null distribution where the *p*-value is small enough

that the risk of false +ve is deemed acceptable

Orion Trapezium Star Forming Region

10 arcsec

110 counts

 \Rightarrow 95±11 counts from source

140 counts in 9× area

An observation that falls in the tail of the null distribution where the *p*-value is small enough

Estimate source strength as $Net = N_S - N_B / B$ $\sigma_{Net} = \sqrt{\{N_S + N_B / \mathbb{B}^2\}}$

that the risk of false +ve is deemed acceptable

Orion Trapezium Star Forming Region

10 arcsec

110 counts

 \Rightarrow 95±11 counts from source

140 counts in 9× area

An observation that falls in the tail of the null distribution where the *p*-value is small enough

Estimate source strength as $Net = N_S - N_B / B$ $\sigma_{\text{Net}} = \sqrt{\{N_{\text{S}} + N_{\text{B}} / \mathbb{B}^2\}}$ 110-140/9=95 $\sqrt{(110+140/81)}=11$

that the risk of false +ve is deemed acceptable

Orion Trapezium Star Forming Region

10 arcsec

110 counts

 \Rightarrow 95±11 counts from source

140 counts in 9× area

An observation that falls in the tail of the null distribution where the *p*-value is small enough

Estimate source strength as $Net = N_S - N_B / B$ $\sigma_{Net} = \sqrt{\{N_S + N_B / \mathbb{B}^2\}}$ 110-140/9=95 $\sqrt{(110+140/81)}=11$

Detect the existence of a source by checking the p-value for the background distribution

that the risk of false +ve is deemed acceptable

Orion Trapezium Star Forming Region

10 arcsec

110 counts

 \Rightarrow 95±11 counts from source

140 counts in 9× area

An observation that falls in the tail of the null distribution where the *p*-value is small enough

Estimate source strength as $Net = N_S - N_B / B$ $\sigma_{\text{Net}} = \sqrt{\{N_{\text{S}} + N_{\text{B}} / \mathbb{B}^2\}}$ 110-140/9=95 $\sqrt{(110+140/81)}=11$

Detect the existence of a source by checking the p-value for the background distribution $p=\Pr(N_B/\mathbb{B} \ge N_S)$ $=1 - \sum_{K=0,NS} (N_B/B)^K e^{-NB/B}/K!$

1 - 0.842 = 0.158

that the risk of false +ve is deemed acceptable

Orion Trapezium Star Forming Region

10 arcsec

110 counts

 \Rightarrow 95±11 counts from source

140 counts in 9× area

An observation that falls in the tail of the null distribution where the *p*-value is small enough

Estimate source strength as $Net = N_S - N_B / B$ $\sigma_{\text{Net}} = \sqrt{\{N_{\text{S}} + N_{\text{B}} / \mathbb{B}^2\}}$ 110-140/9=95 $\sqrt{(110+140/81)}=11$

Detect the existence of a source by checking the p-value for the background distribution $p=\Pr(N_B/\mathbb{B} \ge N_S)$ $=1 - \sum_{K=0,NS} (N_B/B)^K e^{-NB/B}/K!$ 1 - 0.842 = 0.158>> typical threshold p

* The best fit is one that maximizes the likelihood

- * The best fit is one that maximizes the likelihood
- * e.g., linear regression $y_i = \alpha + \beta x_i + \epsilon$

Fitting: Best-fit

- * The best fit is one that maximizes the likelihood
- * e.g., linear regression $y_i = \alpha + \beta x_i + \epsilon$ minimizing sum-squared residuals)

$$\ln L \propto \sum_{k} (y_{k} - \alpha - \beta x_{k})^{2}, \text{ with } \frac{\partial \ln L}{\partial \alpha} = \frac{\partial \ln L}{\partial \beta}$$
$$\hat{\beta} = \operatorname{Cov}(x, y) / \operatorname{Var}(x) \equiv \rho(x, y) \sqrt{\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}}, \text{ and } \hat{\alpha} =$$

solve by finding extremum of log likelihood (for Gaussian case, maximizing likelihood means

= 0

$\bar{y} - \hat{\beta}\bar{x}$

Fitting: Best-fit

- * The best fit is one that maximizes the likelihood
- * e.g., linear regression $y_i = \alpha + \beta x_i + \epsilon$ minimizing sum-squared residuals)

$$\ln L \propto \sum_{k} (y_{k} - \alpha - \beta x_{k})^{2}, \text{ with } \frac{\partial \ln L}{\partial \alpha} = \frac{\partial \ln L}{\partial \beta}$$
$$\hat{\beta} = \operatorname{Cov}(x, y) / \operatorname{Var}(x) \equiv \rho(x, y) \sqrt{\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}}, \text{ and } \hat{\alpha} =$$

Notice notation:

solve by finding extremum of log likelihood (for Gaussian case, maximizing likelihood means

= 0

$\bar{y} - \hat{\beta}\bar{x}$

Fitting: Best-fit

- The best fit is one that maximizes the likelihood •
- * e.g., linear regression $y_i = \alpha + \beta x_i + \epsilon$ minimizing sum-squared residuals)

$$\ln L \propto \sum_{k} (y_k - \alpha - \beta x_k)^2, \text{ with } \frac{\partial \ln L}{\partial \alpha} = \frac{\partial \ln L}{\partial \beta} = 0$$
$$\hat{\beta} = \operatorname{Cov}(x, y) / \operatorname{Var}(x) \equiv \rho(x, y) \sqrt{\frac{\operatorname{Var}(x)}{\operatorname{Var}(y)}}, \text{ and } \hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$

Notice notation:

 \overline{bar} and $\hat{h}\hat{a}\hat{t}$ to indicate sample averages and best-fit values Грєєк letters for model quantities, Roman for data quantities

solve by finding extremum of log likelihood (for Gaussian case, maximizing likelihood means

Fitting: Error Bars

* Covariance errors aka curvature errors aka inverse of the Hessian

For Gaussian, $\frac{\partial^2 \ln L_{\text{Gauss}}}{\partial x^2} \propto \frac{1}{\sigma^2}$

- i.e., compute curvature of log-likelihood surface at best fit and return its inverse as the variance
- + easy, obtained as byproduct of fitting
- sensitive to fluctuations
- invariably underestimated

Fitting: Error Bars

* Covariance errors aka curvature errors aka inverse of the Hessian

For Gaussian, $\frac{\partial^2 \ln L_{\text{Gauss}}}{\partial x^2} \propto \frac{1}{\sigma^2}$

- i.e., compute curvature of log-likelihood surface at best fit and return its inverse as the variance
- + easy, obtained as byproduct of fitting
- sensitive to fluctuations
- invariably underestimated

Fitting: Error Bars

* $\Delta \chi^2$

Difference from best-fit χ^2 value is itself a χ^2 distribution with dof=1, so look for percentiles of that distribution:

$$\Delta \chi^2 = +1 \equiv 68\% \ (1\sigma)$$

 $\Delta \chi^2 = +2.71 \equiv 90\% (1.6\sigma)$

+ more robust than curvature

– gets complicated if parameters are correlated

- higher computational cost

- * How good is the model as a description of your data?
- * How can you tell when you *do* have a "good" fit?

- * How good is the model as a description of your data?
- * How can you tell when you *do* have a "good" fit?

* $-2 \ln L_{Gauss}$ is called the chi-square,

$$\chi^2 = \sum_k \frac{(x_k - \mu_k)^2}{\sigma_k^2}$$

* and its distribution describes the probability of getting (x_k, y_k) to match "similarly" for several bins

- * How good is the model as a description of your data?
- * How can you tell when you *do* have a "good" fit?

* $-2 \ln L_{Gauss}$ is called the chi-square,

$$\chi^2 = \sum_k \frac{(x_k - \mu_k)^2}{\sigma_k^2}$$

- * and its distribution describes the probability of getting (x_k, y_k) to match "similarly" for several bins
- * When the observed $\chi^2 \sim dof \pm \sqrt{2} \cdot dof$, the model is doing a good job of matching the data. The farther it is from this range, the less likely it is that the model is a good description of the data
 - But always use your judgement, because this is a *probabilistic* rule! *
 - * Watch out for how σ^2 is defined (model variance is better)

Fitting: CStat

* Recall Poisson log Likelihood: $\ln L_{\text{Pois}} = -\ln \Gamma(k+1) + k \ln \lambda - \lambda$ * χ^2 is $-2 \ln L_{\text{Gauss}}$, cstat is $-2 \ln \frac{L_{\text{Pois}}}{L_{\text{Saturated Pois}}}$

 $\mathbf{cstat} = 2\sum_{i} M_i - D_i + D_i \cdot (\ln D_i - \ln M_i)$

- * Watch out: cstat is only asymptotically χ^2 , not quite the Poisson likelihood, 0s are thrown away, background must be explicitly modeled
- * unbiased for low counts compared to χ^2 , asymptotically χ^2 , rudimentary goodness-of-fit exists (Kaastra 2017, A&A 605, A51) [AnetaS] https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/cstat_vs_chisq_SimsNotebook.ipynb [AnetaS] https://cxc.cfa.harvard.edu/ciao/workshop/oct20_egypt_virt/data_for_cstat_vs_chisq_SimsNotebook.tar.gz

where D_i are observed counts, and M_i are model predicted counts in bin *i* and Saturated Poisson means λ is set to k, or a model where M_i is set to D_i . cstat can also be derived as an approximate form of the L_{Pois} , using Stirling's approximation for $\Gamma(\cdot)$

Handbook of X-ray Astronomy (Arnaud, Smith, Siemiginowska): https://doi.org/10.1017/CBO9781139034234.008

photon index is marked with a dashed line and it was set at $\gamma = 1.28$

Fig. 7.3 Distributions of a photon index parameter γ obtained by fitting simulated X-ray spectra with 6000 counts and using the three different statistics: S_{Pearson}^2 , S^2 and C (i.e. the Poisson likelihood) statistics. The true value of the simulated

Statistical Tools in CIAO/Sherpa

- * fit: non-linear minimization fitting
- * **conf/covar**: uncertainty intervals and error bars
- * resample_data: to get bootstrap distribution of model parameter draws when data errors are asymmetric
- * **bootstrap/sample_flux/sample_photon_flux/sample_energy_flux**: with replacement/parametric bootstrap to get Monte Carlo distribution accounting for parameter uncertainties
- * **get_draws**: Markov Chain Monte Carlo (MCMC) engine **pyBLoCXS** (Bayesian Low-Counts X-ray Spectral analysis; van Dyk et al. 2001, ApJ 548, 224)
- * calc_mlr, calc_ftest: model comparison via Likelihood Ratio Test (LRT)/F-test
- * plot_pvalue, plot_pvalue_results: to do posterior predictive p-value checks (Protassov et al. 2002, ApJ 571, 545)
- * glvary: light curve modeling (Gregory & Loredo 1992, ApJ 398, 146)
- * celldetect/wavdetect/vtpdetect/mkvtpbkg: source detection in images
- * aprates: Bayesian aperture photometry also used in **srcflux** (Primini & Kashyap 2014, ApJ 796, 24)
- * the python interpreter in Sherpa gives access to python libraries, and can be used to call upon packages and libraries in R, which are written by statisticians for statisticians

Statistics is a tool; it can be misused

- * "All models are wrong, but some are useful." George Box, c.1987
- Tak, H., et al., 2024, ApJS 275, 30 <u>https://doi.org/10.3847/1538-4365/ad8440</u> —
 be aware of
 - * where the data are coming from, what sort of filtering they have been subjected to
 - * conditions under which a particular theorem is proven to be valid and make sure they apply under the scenario you are considering
 - * assumptions made about the nature and range of model parameters and model complexity, and always do sanity checks and sensitivity analyses
 - limitations of hypothesis tests, and always consider the power of the tests and false detection rates

Some useful reading material

- * Larry Bretthorst (1988), Bayesian Fourier analysis, https://bayes.wustl.edu/glb/book.pdf
- p/book/9780412983917
- * Larry Wasserman (2006), All of Non-Parametric Statistics, <u>http://www.stat.cmu.edu/~larry/all-of-nonpar/</u>
- * Rasmussen & Williams (2006), Gaussian Processes for Machine Learning, http://www.gaussianprocess.org/gpml/
- * Feigelson & Babu (2012), Modern Statistical Methods for Astronomy with R Applications, https://astrostatistics.psu.edu/MSMA/
- analysis-for-the-physical-sciences/09E9A95DAE275F5B005676C71B542598
- * Gelman et al. (2013), Bayesian Data Analysis, https://www.routledge.com/Astrostatistics-1st-Edition/Babu-Feigelson-Morgan-Keiding-Van-der-Heijden/p/book/9780412983917
- * Edward Robinson (2016), Data analysis for scientists and engineers, <u>https://press.princeton.edu/titles/10911.html</u>
- * Vinay Kashyap (2020), Basics of Astrostatistics, https://iachec.org/wp-content/uploads/2021/05/Kashyap_2020_Tutorial_Guide_to_X-
- * Buchner & Boorman (2023), Statistical aspects of X-ray spectroscopy, https://arxiv.org/abs/2309.05705
- ad8440

* Tom Loredo (1990), monograph on neutrinos from 87A, http://hosting.astro.cornell.edu/staff/loredo/bayes/L90-LaplaceToSN1987A-scan.pdf

* Babu & Feigelson (1996), Astrostatistics, https://www.routledge.com/Astrostatistics-1st-Edition/Babu-Feigelson-Morgan-Keiding-Van-der-Heijden/

* Arnaud, Smith, & Siemiginowska (2011), Handbook of X-ray Astronomy, http://hea-www.cfa.harvard.edu/~rsmith/xrayastronomyhandbook/

* Phil Gregory (2012), Bayesian Logical Data Analysis for Physical Sciences, https://www.cambridge.org/core/books/bayesian-logical-data-

ray_and_Gamma-ray_Astronomy_Data_Reduction_and_Analysis_Editor_Cosimo_Bambi_Springer_ISBN_978-981-15-6337-9_chapter_6-1.pdf * Feigelson, Kashyap, Siemiginowska (2022), Time domain methods for X-ray and gamma-ray astronomy, https://arxiv.org/abs/2203.08996 * Tak et al. (2024), Six Maxims of Statistical Acumen for Astronomical Data Analysis, ApJS 275, 30 https://doi.org/10.3847/1538-4365/

