High Resolution X-ray Spectroscopy

Hans Moritz Günther (MIT) with material from Michael A. Nowak (Washington University St. Louis)

Resolution

What Do We Mean by High Resolution?

- CCD Spectral Resolution (Suzaku): E/ΔE_{FWHM} ~18 @1 keV, ~46 @6.4 keV (scales as E^{0.5})
- Gratings Spectral Resolution: E/ΔE_{FWHM} ~314 @1 keV (XMM-RGS)
 E/ΔE_{FWHM} ~1350 @1 keV, ~214 @6.4 keV (Chandra-HETG)
- Scales as E⁻¹ (explanation coming up...)
- New: X-ray Calorimetry
 ΔΕ_{FWHM} ~5–7 eV, Ε/ΔΕ_{FWHM} ~1000 @6.4 keV (scales as E)

High/Low Res Comparison

Source: 4U 1957+11

- Temperature
- Density
- Ionization
- Velocity shifts
- Line shapes
- Absorption lines

Ness et al (2022)

250

200

150

100

50

1.0

- Temperature
- Density
- Ionization
- Velocity shifts
- Line shapes
- Absorption lines

0.8 dust 0.6gas 0.40.2ISM gas and dust 21.5 22.022.5Psaradaki et al (2023) Wavelength (Å)

21.5

O K-edge

IIV 0

22.0

50

23.5

23.0

snp + III C

23.0

ΠO

10

23.5

010

22.5

 Absorption lines (here blue and red-shifted) allow constraining the size of neutron stars

> 4U 1916-053 (an accretion neutron star) Trueba et al (2022)

Incoming Photon

Calorimeter

(See http://web.mit.edu/figueroagroup/ucal/ucal_basics/index.html)

Gratings

Figure taken from Antonine education website (which no longer exists)

Grating Equation:

$$n\lambda = n\frac{hc}{E} = d\sin\theta \approx d\theta$$

Reflection Gratings

Transmission Gratings

Grating Equation:

 $n\lambda = n\frac{hc}{E} = d\sin\theta \approx d\theta$

Chandra-HETG

Invar grating frame.

Scanning electron micrograph of gold grating.

Gratings and Microcalorimeters...

Energy

If ever...

MEG

Greater Distance = Higher Resolution Resolution Limited by CCDs & Gratings Accuracy

Chandra HETG

Chandra (ACIS) LETG

- 0th order shows diffraction from coarse support structure
- "Whiskers" are diffraction from fine support structure

Chandra HETG

Order Sorting (aka Banana Plots)

- Multiple orders land on the same detector location
- CCD resolution is sufficient to separate these!
- Plotting E_{CCD} vs. $n\lambda$ should show "bananas"
- Or we can plot $n\lambda$ vs. E_{CCD} $n\lambda$ /hc
- Eccd nλ/hc is the "order"

unix%> ds9 acisf11044N002_evt2.fits.gz &

0	00	X SAOImage d	ls9			
Fi	OOO X Binning Parameters S	Analysis				Help
File	File Edit Method Block Buffer =					
Ob Val WC Ph Im:	Bin Columns Block Min Max x 1 0.5 8192.5 energy 50 0 1000000					
Fra	or center of data	[[aaala			
-	Pin Filtor	zoom	scale	color	region wc	rainbow
	Bin 3rd Column Depth Min Max 1 0 0 Apply Update Filter Clear Filter Close					
					100	200 300 40

Order Sorting Plot

Data Extraction Tasks

- All these can be accomplished with CIAO tools
 - (Select time intervals, "clean" the data)
- Where is my source?
 - tg_detect2 or "by hand"
- What regions should be assigned orders?
 - tg_create_mask
- Which events should be assigned to which orders?
 - tg_resolve_events
- What region (width) should I extract?
 - tg_extract
- Create Response (RMF and ARF files)
 - Mktgresp

Chandra HETG

Chandra (ACIS) LETG

- 0th order shows diffraction from coarse support structure
- "Whiskers" are diffraction from fine support structure

Where is my source?

Accuracy can be as good as 0.1 pixels

tg_create_mask

Hierarchy: Oth Order > MEG > HEG

CIAO defaults are a bit too wide, so MEG "clips" HEG high energy for "Continuum" Sources

These are the Potential Gratings Events

"Resolving" Events

Fraction of RMF is the "Order Sorting Integrated Probability" (OSIP) and is Incorporated into ARF

Order Sorting

- For Chandra, there are two choices:
 - "Standard" (which varies with wavelength) with a pre-calculated OSIP
 - "Flat", with the user choosing a fixed ratio, e.g., Ecco m /hc ≥ 0.8–1.3 and OSIP assumed to be 1
 - Flat is usually the choice for "Continuous Clocking" mode
- To be a gratings photon, it has to be at the right place with the expected energy
 - Greatly reduces background!

tg_extract_events

Isolated Source, Defaults are Fine

Fraction of LSF is Incorporated in RMF

Narrower is Sometimes Necessary

Orion Star Cluster

Response Matrices & ARF

- If you've extracted the standard width, the standard RMF is sufficient
- ARF (effective area file) has to incorporate spatial information about the detector. Not only chip gaps, but also bad pixels & columns
- Standard tool: mktgresp

And Now Analysis Begins!

- You have extracted spectra and created response matrices/ effective area files
- Analyze in any standard program: ISIS, XSPEC, Sherpa, SPEX
- The standard is to extract 1st, 2nd, 3rd (+/-) orders
 - Higher orders have less flux, and less accurate responses difficult to use for continuum
 - Line dominated sources, good for separating blends of lines in bright sources

Complex

- Pileup Less likely to happen, but it can ...
 - pile-up model for ISIS/Sherpa (XSPEC?)
- Continuous Clocking Mode (CC-mode)
- Sources with spatial structure
- Sources with spatial structure and CC-mode

Time Intervals & Data Cleaning

• You can do a time slice with dmcopy:

dmcopy "evt1_file[stdevt][time=5.1096500e8:5.1098000e8]" evt1_new

- You can then run the chandra_repro script on this new file, and proceed from there
 - Removes bad pixels
 - Applies Good Time Intervals (GTI)
 - Removes "streaks" (S4 Chip)
 - Selects "Good Grades"

Continuous Clocking

- Image collapsed to one dimension
- But, MEG 2nd orders are suppressed, so HEG 1st order is always assumed
- Extraction width is assumed to be 100%, and OSIP is chosen to be flat (~0.8–1.3) and assumed 100%
- No source is piled up in this mode we've looked at Sco X-1! (The Chandra team was *not* happy!)
- But, there are still issues at the few % level...
- We recommend putting MEG -1 and HEG+1 off the chips

An application: Accretion in young stars

- How do stars and planets form?
- How are stars and their disks connected?
- Measure accretion shock in grating spectra.

- Intro here, then I'll switch to a notebook with code.
- I'm currently working on this research project, so I don't have final answers.

Orion Nebula Cloud

Stars from in dense clouds of gas and dust.

Image: NASA, ESA, Hubble Space Telescope Orion Treasury Project Team, Massimo Robberto (STScl, ESA)

Phases of star formation

M.Hogerheijde1998, after Shu et al. 1987

Image of a disk

- Young stars are surrounded by gas and dust disks.
- Planets from in these disks.
- Where does the mass go?

Credit: S. Andrews (Harvard-Smithsonian CfA), ALMA (ESO/NAOJ/NRAO)

Simulations of accretion streams

Singh et al. (2024), ApJ

Spectral signatures of accretion

- Spectral template + continuum (veiling) + lines
- Energy conservation -> mass accretion rate

Herceg et al (2023), ApJ

Accretion changes the Xray spectrum, too.

Credit: Spectra: NASA/CXC/RIT/J.Kastner et al.; Illustration: NASA/CXC/M.Weiss

Accretion changes with time

 A lot of fluctuation on short time scale

 But average stable for 25 years

Herceg et al (2023), ApJ

- Temperature
- Density
- Ionization
- Velocity shifts
- Line shapes
- Absorption lines

