
Statistics I & II Peter Freeman

CXC

1

5th Chandra/CIAO Workshop, 29-31 October 2003

Statistics I:
Issues in Model Fitting 
in the X-Ray Regime

Peter Freeman
Harvard-Smithsonian Center for Astrophysics



Statistics I & II Peter Freeman

CXC

2

5th Chandra/CIAO Workshop, 29-31 October 2003

Glossary of Important Notation
• D : a dataset 
• Di : the datum of bin i of the dataset 
• N : the number of bins in the dataset 
• B : a background dataset associated with D 
• Bi : the datum of bin i of the background dataset 
• M = M(θ): a model with free parameters θ
• : the vector of best-fit model parameters 
• P : the number of (freely varying) model parameters 
• Mi : the convolved model amplitude in bin i
• µ : the mean of a distribution 
• V : the variance of a distribution 
• σ : the standard deviation of a distribution 
• E[X ]: the expectation of variable X
● L: the likelihood 
• L: the log-likelihood logL

● χ2: the “chi-square” statistic 

θ̂
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Definitions
• Random variable: a variable which can take on different numerical values, 

corresponding to different experimental outcomes. 

– Example: a binned datum Di , which can have different values even 
when an experiment is repeated exactly. 

• Statistic: a function of random variables. 

– Example: a datum Di, or a population mean 

• Probability sampling distribution: the normalized distribution from which a 
statistic is sampled. Such a distribution is commonly denoted p(X |Y), “the 
probability of outcome X given condition(s) Y,” or sometimes just p (X). 
Note that in the special case of the Gaussian (or normal) distribution, p(X) 
may be written as N(µ,σ 2), where µ is the Gaussian mean, and σ 2 is its 
variance. 

1( / )N
i iD Nµ =∑=   
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Properties of Distributions
The beginning X-ray astronomer only needs to be familiar with four properties of distributions: the 
mean, mode, variance, and standard deviation, or “error.”

• Mean: µ = E[X ] = ∫ dX X p(X)

• Mode: max[p(X)] 
• Variance: 
• Error:

Note that if the distribution is Gaussian, then σ is indeed the Gaussian σ (hence the notation). 

If two random variables are to be jointly considered, then the sampling distribution is two-dimensional, 
with shape locally described by the covariance matrix: 

where

The related correlation coefficient is 

The correlation coefficient can range from -1 to 1. 
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Figure 1: Top: example of a joint probability sampling distribution for two random variables. 
Bottom: the marginal sampling distribution p(x) = ∫ dy p(x,y) (Eadie et al. 1971, p. 16). 
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The discrete Poisson distribution 

gives the probability of finding exactly Di events in bin i of dataset D in a given length of time, if the 
events occur independently at a constant rate Mi.

The Poisson Distribution

Things to remember about the Poisson distribution: 
• µ= E [Di] = Mi ;
• V [Di] = Mi; 
• cov[Di1 , Di2] = 0;
• the sum of n Poisson-distributed variables (found by, e.g., combining the data in n bins) is 

itself Poisson-distributed with variance           ; and 
• as             , the Poisson distribution converges to a Gaussian distribution N (µ = Mi ; σ2 = 

Mi ). 

In the remainder of this class, we will concentrate exclusively upon fitting counts spectra, 
i.e., fitting data sampled from the Poisson distribution. 
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Figure 2: Integer counts spectrum sampled from a constant amplitude model with mean µ = 60 counts, and fit with a parabolic model. 
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Figure 3: Example of a two-dimensional integer counts spectrum.  Top Left: Chandra ACIS-S data of X-ray cluster MS 2137.3-
2353, with ds9 source regions superimposed. Top Right: Best-fit of a two-dimensional beta model to the filtered data. Bottom Left:
Residuals (in units of σ ) of the best fit.   Bottom Right: The applied filter; the data within the ovals were excluded from the fit. 
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Figure 4: Comparison of Poisson distributions (dotted) of mean µ = 2 and 5 with normal distributions of the same mean and 
variance (Eadie et al. 1971, p. 50). 
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Figure 5: Comparison of Poisson distributions (dotted) of mean µ = 10, 25 and 40 with normal distributions of the same mean and 
variance (Eadie et al. 1971, p. 50). 
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One can use the Poisson distribution to assess the probability of sampling a 
datum Di given a predicted (convolved) model amplitude Mi. Thus to assess 
the quality of a fit, it is natural to maximize the product of Poisson 
probabilities in each data bin, i.e., to maximize the Poisson likelihood: 

In practice, what is often maximized is the log-likelihood, L = logL. A well-
known statistic in X-ray astronomy which is related to L is the so-called “Cash 
statistic”:

2 [ log ] 2 ,
N

i i i
i

C M D M L≡ − −∑

Assessing the Quality of Fit
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(Non-) Use of the Poisson Likelihood

In model fits, the Poisson likelihood is not as commonly used as it should be. Some 
reasons why include: 

• a historical aversion to computing factorials; 

• the fact the likelihood cannot be used to fit “background subtracted” spectra; 

• the fact that negative amplitudes are not allowed (not a bad thing physics abhors    
negative fluxes!);

• the fact that there is no “goodness of fit" criterion, i.e. there is no easy way to 
interpret Lmax (however, cf. the CSTAT statistic of Sherpa); and 

• the fact that there is an alternative in the Gaussian limit: the χ2 statistic. 
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The χ2 Statistic
Here, we demonstrate the connection between the Poisson likelihood and the χ2 statistic.1

● Step 1: write down the Poisson likelihood (in one bin).
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• Step 3: look near, e.g., the log-likelihood peak, and 
reparameterize in terms of .i i
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1The following is based on unpublished notes by Loredo (1993).
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Validity of the χ2 Statistic
Summarizing the results shown on the last panel, if
– Di >>  1 in every bin i, and 
– terms of order ε3 and higher in the Taylor series expansion of L may be ignored, 

then the statistic χ2 may be used to estimate the Poisson likelihood, and an observed
value       will be sampled from the χ2 distribution for N - P degrees of freedom: 

Note that if N - P = 1, the χ2 distribution diverges, while in the limit             , it 
asymptotically approaches a Gaussian distribution with mean N - P and variance 2(N -
P ). Also note that if P ≥ N , then the χ2 distribution cannot be defined – you are doing 
something very wrong if you have more model parameters than data bins! 
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Validity of the χ2 Statistic
So, when can you safely use the χ2 statistic instead of the maximum likelihood in your 
fits? 

This is a trick question - the answer is always. That's because you can run simulations 
to determine the distribution from which your observed value of χ2 is sampled to 
quantitatively assess your fit. However, the whole reason one uses the χ2 statistic is to 
avoid time-consuming simulations (and to use the χ2 distribution directly)! 

That said, the rules: 

● A general rule-of-thumb says that χ2 is sampled from the χ2 distribution if there is a minimum 
of five counts in every bin. (But there is no standard reference for this in the literature, and the 
more counts, the better!) 

● Also, the fit must be good!

Unfortunately, bad fits are common, even necessary, in X-ray astronomy; one example 
is the fit of a continuum model to data exhibiting an obvious (emission or absorption) 
line, done in an attempt to quantify how well the line is detected (a issue we'll return to 
later, when discussing model comparison). Inferences made using such fits can be 
suspect!



Statistics I & II Peter Freeman

CXC

16

5th Chandra/CIAO Workshop, 29-31 October 2003

Figure 6: Examples of the χ2 distribution for v = N - P = 1, 2, 3, 4, and 5 (Eadie et al. 1971, p. 64). 
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The version of χ2 derived above is dubbed “data variance” χ2 , or     , because of the 
presence of D in the denominator. Generally, the χ2 statistic is written as: 

where      represents the (unknown!) variance of the Poisson distribution from which Di is 
sampled. 

χ2 Statistic
Data Variance Di

Model Variance Mi

Gehrels
Primini Mi from previous best-fit
Churazov based on smoothed data D
“Parent”
Least Squares 1

Note that some X-ray data analysis routines may estimate σi for you during data reduction. 
In PHA files, such estimates are recorded in the STAT_ERR column. 

Versions of the χ2 Statistic
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• The χ2 goodness-of-fit is derived by computing

This can be computed numerically using, e.g., the GAMMQ routine of Numerical 
Recipes. 

• A typical criterion for rejecting a model is                  (the “95% criterion”). However, 
using this criterion blindly is not recommended! 

• A quick’n’dirty approach to building intuition about how well your model fits the 
data is to use the reduced χ2, i.e.,

– A “good” fit has 

– If                   the fit is “too good” -- which means (1) the errorbars are too large, (2)        
is not sampled from the χ2 distribution, and/or (3) the data have been fudged.

The reduced χ2 should never be used in any mathematical computation if you are
using it, you are probably doing something wrong! 

Statistical Issues: Goodness-of-Fit
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Figure 7: Comparison of the distributions of 500 sampled values of χ2 versus the expected distribution for 99 degrees of freedom. Top:
χ2 with Gehrels variance. Bottom: χ2 with data variance.
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• A typical “dataset” may contain multiple spectra, one containing source and 
“background” counts, and one or more others containing only “background” counts. 

– The “background” may contain cosmic and particle contributions, etc., but we'll ignore 
this complication and drop the quote marks. 

• If possible, one should model background data: 
⇒ Simultaneously fit a background model MB to the background dataset(s) Bj , and a source 

plus back- ground model MS + MB to the raw dataset D. 
⇒ The background model parameters must have the same values in both fits, i.e., do not fit 

the background data first, separately. 
⇒ Maximize LB × LS+B or minimize

• However, many X-ray astronomers continue to subtract the background data from the 
raw data: 

n is the number of background datasets, t is the observation time, and β is the 
“backscale” (given by the BACKSCAL header keyword value in a PHA file), typically 
defined as the ratio of data extraction area to total detector area. 

Statistical Issues: Background Subtraction
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sherpa> data source.pi 
sherpa> back back.pi 
sherpa> source = xswabs[sabs]*pow[sp] 
sherpa> bg = xswabs[babs]*pow[bp] 
sherpa> statistic cash 
sherpa> fit # maximize L(B)*L(S+B) or minimize X^2(B)+X^2(S+B) 
... 
powll: final function value = -7.01632E+03 

sabs.nH 2.35843 10^22/cm^2 
sp.gamma 1.48526 
sp.ampl 0.00195891 

babs.nH 0.671569 10^22/cm^2 
bp.gamma 1.07225 
bp.ampl 0.000107204 

sherpa> projection 
... 

--------------------------------------------------------
Parameter Name Best-Fit Lower Bound Upper Bound 
--------------------------------------------------------

sabs.nH 2.35732 -0.0981442 +0.150539 
sp.gamma 1.48477 -0.0645673 +0.101794 
sp.ampl 0.00195682 -0.000177659 +0.000317947 
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Figure 8: Top: Best-fit of a power-law times galactic absorption model to the source spectrum of supernova remnant G21.5-0.9. 
Bottom: Best-fit of a separate power-law times galactic absorption model to the background spectrum extracted for the same source. 
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Statistical Issues: Background Subtraction
•Why subtract the background? 

– It may be difficult to select an appropriate model shape for the background. 
– Analysis proceeds faster, since background datasets are not fit.
– “It won't make any difference to the final results.”

•Why not subtract the background? 
– The data    are not Poisson-distributed -- one cannot fit them with the Poisson 

likelihood. (Variances are estimated via error propagation: 

– It may well make a difference to the final results: 
∗ Subtraction reduces the amount of statistical information in the analysis quantitative 

accuracy is thus reduced. 
∗ Fluctuations can have an adverse effect, in, e.g., line detection. 
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• Here, we repeat the fit from above, except that this time the data are background-
subtracted:

sherpa> data source.pi 

sherpa> back back.pi 

sherpa> subtract 

sherpa> statistic chi gehrels # can't use Cash! 

sherpa> fit 

... 

powll: final function value = 1.88299E+02 

sabs.nH 2.67251 10^22/cm^2 

sp.gamma 1.74921 

sp.ampl 0.00261343 

sherpa> projection 

... 

Computed for projection.sigma = 1 

--------------------------------------------------------

Parameter Name Best-Fit Lower Bound Upper Bound 

--------------------------------------------------------
sabs.nH 2.67251 -0.202747 +0.214219 
sp.gamma 1.74921 -0.14036 +0.144823 
sp.ampl 0.00261343 -0.000475006 +0.000597735

Statistical Issues: Background Subtraction
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• Compare this with the previous result: 

--------------------------------------------------------

Parameter Name Best-Fit Lower Bound Upper Bound 

--------------------------------------------------------

sabs.nH 2.35732 -0.0981442 +0.150539 

sp.gamma 1.48477 -0.0645673 +0.101794 

sp.ampl 0.00195682 -0.000177659  +0.000317947 



Statistics I & II Peter Freeman

CXC

26

5th Chandra/CIAO Workshop, 29-31 October 2003

Statistical Issues: Rebinning
• Rebinning data invariably leads to a loss of statistical information!

• Rebinning is not necessary if one uses the Poisson likelihood to make statistical 
inferences. 

• However, the rebinning of data may be necessary to use χ2 statistics, if the number 
of counts in any bin is <= 5. In X-ray astronomy, rebinning (or grouping) of data 
may be accomplished with: 
– grppha, an FTOOLS routine; or 

– dmgroup, a CIAO Data Model Library routine. 

One common criterion is to sum the data in adjacent bins until the sum equals five 
(or more). 

● Caveat: always estimate the errors in rebinned spectra using the new data     in 
each new bin (since these data are still Poisson-distributed), rather than 
propagating the errors in each old bin. 
⇒For example, if three bins with numbers of counts 1, 3, and 1 are grouped to make one 

bin with 5 counts, one should estimate V[D’= 5] and not V[D’] = V[D1 = 1] + V[D2 = 3] 
+ V [D3 = 1]. The propagated errors may overestimate the true errors. 

'
iD
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Statistical Issues: Bias

• If one samples a large number of datasets from a given model    and then fits this 
same model to these datasets (while letting θ vary), one will build up sampling 
distributions for each parameter θk . 

• An estimator (e.g., χ2) is biased if the mean of these distributions (E[θk]) differs from 
the true values θk,o. 

• The Poisson likelihood is an unbiased estimator. 
• The χ2 statistic can be biased, depending upon the choice of σ : 

– Using the Sherpa utility FAKEIT, we simulated 500 datasets from a constant model with 
amplitude 100 counts. 

– We then fit each dataset with a constant model, recording the inferred amplitude.

Statistic Mean Amplitude
Gehrels 99.05
Data Variance 99.02
Model Variance 100.47
“Parent”   99.94
Primini 99.94
Cash 99.98

( )ˆM θ
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Figure 9: A demonstration of bias.  Five hundred datasets are sampled from a constant model with amplitude 100 and then are fit 
with the same constant amplitude model, using χ2 with data variance. The mean of the distribution of fit amplitude values is not 100, 
as it would be if the statistic were an unbiased estimator. 
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Statistical Issues: Systematic Errors 

• In X-ray astronomy, one usually speaks of two types of errors: statistical errors, and 
systematic errors. 

• Systematic errors are uncertainties in instrumental calibration. For instance: 
– Assume a  spectrum observed for time t with a telescope with perfect resolution 

and an effective area Ai . Furthermore, assume that the uncertainty in Ai is σA,i . 
– Neglecting data sampling, in bin i, the expected number of counts is Di = 

Dγ,i(∆E )tAi.
– We estimate the uncertainty in Di as

σDi = Dγ,i(∆E )tσA,I = Dγ,i(∆E )tfiAi = fiDi

• The systematic error fiDi ; in PHA files, the quantity fi is recorded in the SYS_ERR 
column. 

• Systematic errors are added in quadrature with statistical errors; for instance, if one 
uses        to assess the quality of fit, then  

• To use information about systematic errors in a Poisson likelihood fit, one must 
incorporate this information into the model, as opposed to simply adjusting the 
estimated error for each datum. 

2
dχ 2( ) .i i i iD f Dσ = +
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Methodologies 
It is important to note that the field of statistics may be roughly divided into two 
schools: the so-called “frequentist” (or classical) school, and the Bayesian 
school. 

● A frequentist assesses a model          by first assuming that 

– M is the “true” model, and 

– are the “true” model parameter values, 

– and then comparing the probability of observing the dataset D with the 
probabilities of observing other datasets predicted by M . 

● A Bayesian assesses       by comparing its probability (given the 
observed dataset D only) with the probabilities of other parameterized 
models, given D. 

We have been able to ignore the differences between the two methodologies 
when discussing model fitting, up to now. 

( )ˆM θ

θ̂

( )ˆM θ
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Statistical Issues: Bayesian Fitting 
The centerpiece of the Bayesian statistical methodology is Bayes' theorem. As applied 
in a model fit, it may be written as 

where 
● p(D|θ ) is the likelihood L (which may be estimated as exp(-χ2/2));
● p(θ ) is the prior distribution for θ, reflecting your knowledge of the parameter 

values before the experiment; 
● p(θ |D) is the posterior distribution for θ, reflecting your knowledge of the 

parameter values after the experiment; and 
● p(D) is an ignorable normalization constant. 

For now, keep in mind that a Bayesian is more interested in finding the mode of the 
posterior distribution than in determining the maximum likelihood! (Delving into the 
hurly-burly world of prior specification is beyond the scope of this class...which is now 
over!) 
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Statistics II:

Model Comparison and Parameter Estimation

Peter Freeman

Harvard-Smithsonian Center for Astrophysics
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Now, Shifting Gears…

A model M has been fit to dataset D and either the maximum of the likelihood function Lmax, 
the minimum of the χ2 statistic χ2

min, or the mode of the posterior distribution has 
been determined. What comes next?

● Model Comparison. The determination of which of a suite of models (e.g.,
blackbody, power-law, etc.) best represents the data.

● Parameter Estimation. The characterization of the sampling distribution for each 
best-fit model parameter (e.g., blackbody temperature and normalization), which 
allows the errors (i.e., standard deviations) of each parameter to be determined.

● Publication!

Here, we cannot ignore the frequentist/Bayesian divide. Hence we will discuss how 
frequentists and Bayesians would complete these tasks, separately…

)|ˆ( Dp θ



Statistics I & II Peter Freeman

CXC

34

5th Chandra/CIAO Workshop, 29-31 October 2003

Frequentist Model Comparison

Two models, M0 and M1 , have been fit to D. M0 , the “simpler” of the two models (generally 
speaking, the model with fewer free parameters) is the null hypothesis.

A frequentist would compare these models by:

● constructing a test statistic T from the best-fit statistics of each fit 
(e.g., );
● determining each sampling distributions for T,  p(T | M0) and p(T | M1);
● determining the significance, or Type I error, the probability of selecting M1 when M0 is correct:

●and determing the power, or Type II error, which is related to the probability β of selecting M0 
when M1 is correct:

⇒If α is smaller than a pre-defined threshold (≤ 0.05, or ≤ 10-4, etc., with smaller thresholds 
used for more controversial alternative models), then the frequentist rejects the null 
hypothesis.

⇒If there are several model comparison tests to choose from, the frequentist uses the most 
powerful one!
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Figure 1: Comparison of distributions p(T | M0) (from which one determines the significance α) and 
p(T | M1) (from which one determines the power of the model comparison test 1 – β) (Eadie et al. 
1971, p.217)
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Standard frequentist model comparison tests include:

The χ2 Goodness-of-Fit (GoF) test:

The Maximum Likelihood Ratio (MLR) test:

where ∆P is the number of additional freely varying model parameters in model M1.
The F-test:

where P1 is the total number of thawed parameters in model M1, I is the incomplete beta function, 
and F is the F-statistic

These are standard tests because they allow estimation of the significance without time-
consuming simulations!
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Frequentist Model Comparison

Notes and caveats regarding these standard tests:

The GoF test is an “alternative-free” test, as it does not take into account 
the alternative model M1.  It is consequently a weak (i.e., not powerful) 
model comparison test and should not be used!

Only the version of F-test which generally has the greatest power is shown 
above: in principle, one can construct three F statistics out of             and 
∆χ2

The MLR ratio test is generally the most powerful for detecting emission 
and absorption lines in spectra.

But the most important caveat of all is that…

2 2
0 1, ,χ χ
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Frequentist Model Comparison

The F and MLR tests are commonly misused by astronomers! There are two
important conditions that must be met so that an estimated derived value α is actually 
correct, i.e., so that it is an accurate approximation of the tail integral of the sampling 
distribution (Protassov et al. 2001):

M0 must be nested within M1, i.e., one can obtain M0 by setting the extra ∆P 
parameters of M1 to default values, often zero; and

those default values may not be on a parameter space boundary.

The second condition may not be met, e.g., when one is attempting to detect an 
emission line, whose default amplitude is zero and whose minimum amplitude is 
zero. Protassov et al. recommend Bayesian posterior predictive probability values as 
an alternative, but a discussion of this topic is beyond the scope of this class.

If the conditions for using these tests are not met, then they can still be used, but the 
significance must be computed via Monte Carlo simulations.
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Bayesian Model Comparison

In the previous class, we showed how Bayes’ theorem is applied in model fits.  It can also 
be applied to model comparison:

p(M) is the prior probability for M;

p(D) is an ignorable normalization constant; and

p(D | M) is the average, or global, likelihood:

In other words, it is the (normalized) integral of the posterior distribution over all 
parameter space.  Note that this integral may be computed numerically, by brute force, or if 
the likelihood surface is approximately a multi-dimensional Gaussian (i.e. if L α exp[-
χ2/2]), by the Laplace approximation:

where C is the covariance matrix (estimated numerically at the mode).
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Bayesian Model Comparison

To compare two models, a Bayesian computes the odds, or odd ratio:

where B10 is the Bayes factor. When there is no a priori preference for either model, 
B10 = 1 of one indicates that each model is equally likely to be correct, while B10 ≥
10 may be considered sufficient to accept the alternative model (although that 
number should be greater if the alternative model is controversial).
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Parameter Estimation
One should speak of confidence or credible intervals or regions rather than “errors.”

● A frequentist derives confidence intervals and regions.
● A Bayesian derives credible intervals and regions.
● An interval is a range (or ranges) of values of a parameter θ that has probability pint of 

containing the parameter’s true value θo .  (A region is simply the multi-dimensional 
analogue of an interval.)

● An infinite number of intervals can be defined for a given parameter: here, we’ll speak 
of intervals that contain the most probable parameter values.
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Parameter Estimation

Instead of the integrated probability pint, many speak of “numbers of σ.” One can 
convert from nσ to pint using the following equation:

2

int 2

1 exp( ) erf ( )
22 2

n

n

np d
σ

σ σπσ
+

−
= − =∫

xx

3.099.7%

2.699.0%

2.095.5%

1.690.0%

1.068.3%

σpint

Note: this conversion between pint and σ, while strictly true only if the sampling 
distribution is a one-dimensional Gaussian, is used by many astronomers in casual 
conversation regardless of the actual distribution shape or dimensionality.
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Parameter Estimation
● Tables showing ∆χ 2 as a function of integrated probability pint and number of degrees 

of freedom v = N – P can cause confusion.  For instance:
- “I have two free parameters in my model.  Hence I should compute 68.3% 

confidence intervals for each parameter using ∆χ 2 = 2.30, right?”
- “No.”

● To find the nσ confidence interval for one parameter, use ∆χ2 for v = 1 (or n2).
● To find the nσ joint confidence region for m parameters, use ∆χ2 for v = m.
● To find either an interval or region using the likelihood function L, use ∆logL = 

∆χ2/2.

27.825.723.521.118.415.199.99%

20.118.216.314.211.89.0099.73%

16.815.113.311.39.216.6399%

12.811.39.708.026.174.0095.4%

10.69.247.786.254.612.7190%

7.045.894.723.532.301.0068.3%

654321pint

v

∆χ2 as a Function of Confidence Level  and Degrees of Freedom 
(Based on Press et al. 1986, p. 536.)
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Parameter Estimation
Never project a (properly estimated) region onto a parameter axis to estimate an 
interval! This always over-estimates the size of the interval.
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To determine confidence intervals and regions, a frequentist generally must simulate 
and fit new datasets to determine the sampling distributions for each model 
parameter.

If the true parameter values are unknown (which is usually the case), then a 
grid of model parameter values should be constructed, with a large number 
of datasets sampled at each grid point.
But the usual choice is to appeal to asymptotic behavior and sample datasets 
using      This method may only be useful in limited circumstances, as 
>= 100 datasets should be sampled and fit for accurate results.

Frequentist Parameter Estimation

).ˆ(θM
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One can estimate confidence intervals without having to use simulations if the χ2

or log L surface in parameter space is “well-behaved,” i.e., if

the surface is approximately shaped like a multi-dimensional paraboloid; and
the best-fit point is sufficiently far from parameter-space boundaries.

Three common ways of determining nσ intervals are:
Varying a parameter’s value, while holding the values of all other parameters at 
their best-fit values, until

the same as above, but allowing the values of all other parameters are allowed to 
float to new best-fit values; and
computing             where the covariance matrix               and I, the information 
matrix computed at the best-fit point, is

Frequentist Parameter Estimation
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Figure 2: Example of a “well-behaved” statistical surface in 
parameter space, viewed as a multi-dimensional paraboloid
(χ2, top), and as a multi-dimensional Gaussian (exp(-χ2 /2) 
≈ L, bottom).
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Figure 3: On the right, 1, 2, and 3σ contours 
determined for a statistical surface that is 
not “well-behaved” in parameter space.  
With such a surface, rigorous parameter 
estimation involves simulations (frequentist
approach) or numerical integration of the 
surface (Bayesian approach). From Freeman 
et al. (1999).
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Frequentist Parameter Estimation

Things to keep in mind about these confidence interval estimators (dubbed 
UNCERTAINTY, PROJECTION, and COVARIANCE in Sherpa, respectively):

● The first method will always underestimate the interval if the value of the 
parameter of interest is correlated with other model parameter values.

● The second method (which is relatively slow) is in a rigorous sense no more 
accurate than the third method (which is fast), but it does provide a means of 
visualizing the statistical surface.

● A statistical surface is “well-behaved” if the second and third methods give 
the same interval estimates.

● The condition that the best-fit point be sufficiently far from parameter-space 
boundaries means that these methods are not appropriate for determining 
upper or lower limits.
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Example with a Well-Behaved Parameter Space
sherpa> fit

powll: v1.2

powll: initial function value = 8.22297E+01

powll: converged to minimum = 6.27050E+01 at iteration = 7

powll: final function value = 6.27050E+01

p.c0 56.2579

p.c1 0.11117

p.c2 -0.00119999

sherpa> uncertainty

Computed for uncertainty.sigma = 1

------------------------------------------------------------

Parameter Name Best-Fit Lower Bound Upper Bound

------------------------------------------------------------

p.c0 56.2579 -0.865564 +0.864461

p.c1 0.11117 -0.0148228 +0.0148038

p.c2 -0.00119999 -0.000189496 +0.000189222
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sherpa> projection

Computed for projection.sigma = 1

------------------------------------------------------------

Parameter Name Best-Fit Lower Bound Upper Bound

------------------------------------------------------------

p.c0 56.2579 -2.64465 +2.64497

p.c1 0.11117 -0.120684 +0.120703

p.c2 -0.00119999 -0.00115029 +0.00114976

sherpa> covariance

Computed for covariance.sigma = 1

------------------------------------------------------------

Parameter Name Best-Fit Lower Bound Upper Bound

------------------------------------------------------------

p.c0 56.2579 -2.64786 +2.64786

p.c1 0.11117 -0.121023 +0.121023

p.c2 -0.00119999 -0.00115675 +0.00115675
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Bayesian Parameter Estimation
A Bayesian estimates credible intervals and regions by marginalizing (integrating) 
the parameter posterior distribution over the space of nuisance (uninteresting) 
parameters.  For instance:

The central 68% of the distribution           is the 1σ credible interval.

Marginalization may be done by brute-force integration or, for higher dimensional 
problems            by adaptive integration.  However, if the statistical surface is 
“well-behaved,” one can also estimate credible intervals using the Laplace
Approximation:

If the values of parameter θ1 is correlated with other parameter values, then when 
computing           , the values of parameters (θ1,···, θP) should be allowed to float to 
new best-fit values.
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