## Introduction to Grating Analysis

# Randall Smith Chandra X-ray Center

The text of this talk is available at http://asc.harvard.edu/ciao/wrkshp.html

Thanks to David Huenemoerder and his spectroscopy page http://space.mit.edu/ASC/analysis/AGfCHRS/AGfCHRS.html

Chandra has either two or three gratings, depending on how you count.

The LETG: Spacing = 1  $\mu m$ 



The HETG: Spacing = 0.2, 0.4  $\mu m$ 



Either one of the two grating assemblies can be inserted at any time:



This is a manual process in the case of the LETG, and so LETG observations are bunched together to save time.

The gratings and the detectors are entirely independent, and so any combination may be selected (although some are less useful than others). The most common combinations are :

- HETG/ACIS-S
- LETG/ACIS-S
- LETG/HRC-S

## Capella with the HETG/ACIS-S detector:



Capella MEG-1 order



Spectrum from the MEG  ${ ext{-}1}$  order

High-resolution (grating) spectra on Chandra cover a huge range of wavelengths: from 1.2-170Å, over two orders of magnitude. Note that wavelength is the natural unit, since all the high-resolution data are from gratings.



LETG/HRC-S Observation of NGC6624

If ACIS is the detector, the CCD resolution can be used to distinguish between different orders; on the HRC, this must be modeled.

Clearly, the spatial and spectral elements are tightly coupled. If the zero-order image is slightly displaced (as can easily happen with heavily piled-up sources), the  $\pm$  order wavelengths will be offset from each other. (If this occurs, you may wish to reprocess with a new position measured by hand.)

## Grating Basics

X-ray gratings work exactly the same as optical gratings: the photons hit the gratings, and some are dispersed in a wavelength-dependent fashion, following the grating equation:

$$\sin \beta = m\lambda/p \tag{1}$$

where  $\lambda$  is the wavelength,  $\beta$  is the dispersion angle (measured from the zero-order image), p is the spatial period of the grating lines, and m is the order number.

So, the goal of the grating pipeline is to:

- Select "good" X-ray events
- Identify the zero order and dispersed image
- Measure the dispersion angle for each event
- Create a binned spectrum
- Calculate the effective area

Note: By default, pixel randomization is turned "on" in the \*\_process\_events step. If you are not concerned about timing fluctuations on 1 ksec timescales, turning it off can increase the HEG resolution by 10%.

#### Identify zero-order, grating arms

tgdetect infile=hrc\_evt1.fits outfile=hrc\_evt1\_src1a.fits OBI\_srclist\_file=NONE

#### Make mask for each grating arm(tg\_create\_mask)

tg\_create\_mask infile=hrc\_evt1.fits outfile=hrc\_evt1\_L1a.fits

input\_pos\_tab=hrc\_evt1\_src1a.fits grating\_obs=header\_value

#### Measure dispersion angle for each event

tg\_resolve\_events infile=hrc\_evt1.fits outfile=hrc\_evt1a.fits regionfile=hrc\_evt1\_L1a.fits acaofffile=hrc\_aoff1.fits eventdef=")stdlev1\_HRC"

#### Apply background filter (dmcopy)

dmcopy "hrc\_evt1a.fits[EVENTS][pha=0:254,(tg\_lam,pi)=region(\$CALDB/data/chandra/
hrc/bcf/tgmask2/letgD1999-07-22pireg062\_N0001.fits)]" hrc\_back\_evt1a.fits opt=all
Apply GTI filter (dmcopy) dmcopy "hrc\_back\_evt1a.fits[EVENTS][@hrc\_std\_flt1.fits][cols
!crsu,!crsv,!amp\_sf,!av1,!av2,!av3,!au1,!au2,!au3,!raw,!sumamps]" hrc\_flt1\_evt1a.fits
opt=all

#### Filter on status (dmcopy)

dmcopy "hrc\_flt1\_evt1a.fits[status=xxxxxx00xxxx00xxxx0000x0000x00000xx]" hrc\_evt2.fits
opt=all

#### Extract a Grating Spectrum (tgextract)

tgextract infile=hrc\_evt2.fits outfile=hrc\_pha2.fits inregion\_file=CALDB
outfile\_type=pha\_typeII tg\_srcid\_list=all tg\_part\_list=header\_value tg\_order\_list=default
ancrfile=none respfile=none

#### Make grating effective area

fullgarf phafile=hrc\_pha2.fits pharow=1 evtfile=hrc\_evt2.fits asol=pcad\_asol1.fits
engrid="hrc\_rmf.fits[cols ENERG\_LO,ENERG\_HI]" dtffile=hrc\_dtf1.fits
badpix=hrc\_bpix1.fits rootname=x\_per

So, what **are** the standard outputs?

**ACIS/HETG** By default 12 spectra are created  $(\pm 1, 2, 3)$  orders for both the HEG and MEG).

**ACIS/LETG** By default 6 spectra are created  $(\pm 1, 2, 3)$  orders for the LEG

**HRC/LETG** By default 2 spectra are created  $(\pm \sum_n i \text{ orders})$ .

**HRC/HETG** Not a recommended configuration.

In each case, a single PHA file (called a PHA Type II) is output. This "PHA2" is a FITS format file that contains N rows of data, one for each spectral order. The file can be viewed with **prism**, and has a relatively simple format. Other standard outputs are the grating arf ("garf") and grating rmf ("grmf"); these are also FITS files.

In Sherpa, grating spectra can be jointly fit to a model. Or, each PHA can be extracted and divided by the ARF to create a fluxed spectrum, which can be fit using any fitting program.

# Know your Data: The Event File is your Friend

unix% dmlist hrc\_evt2.fits cols

| Columns for Table Block EVENTS |                            |                        |                        |                 |                                        |  |  |
|--------------------------------|----------------------------|------------------------|------------------------|-----------------|----------------------------------------|--|--|
| $\underline{\text{Col}}$       | Name                       | Unit                   | Туре                   | Range           | Description                            |  |  |
| 1                              | $\operatorname{time}$      | $\mathbf{S}$           | Real8                  | 6.9 e7: 7.0 e7  | time tag of data record                |  |  |
| 2                              | $rd(tg\_r, tg\_d)$         | $\deg$                 | Real4                  | -2.0: 2.0       | Grating angular coords                 |  |  |
| 3                              | chip(chipx, chipy)         | $\operatorname{pixel}$ | $\operatorname{Int} 2$ | 1:4096          | Chip coords                            |  |  |
| 4                              | tdet(tdetx, tdety)         | $\operatorname{pixel}$ | $\operatorname{Int} 4$ | 1:49368         | Tdet coords                            |  |  |
| 5                              | $\det(\det x, \det y)$     | $\operatorname{pixel}$ | Real4                  | 0.50 : 65536.50 | Det coords                             |  |  |
| 6                              | sky(x,y)                   | $\operatorname{pixel}$ | Real4                  | 0.50 : 65536.50 | Sky coords                             |  |  |
| 7                              | chip_id                    |                        | $\operatorname{Int} 2$ | 1:3             |                                        |  |  |
| 8                              | pha                        |                        | $\operatorname{Int} 2$ | 0.255           |                                        |  |  |
| 9                              | pi                         |                        | $\operatorname{Int} 2$ | 0.255           |                                        |  |  |
| 10                             | $tg\_m$                    |                        | $\operatorname{Int} 2$ | -62:62          | Diffraction order (m)                  |  |  |
| 11                             | $\operatorname{tg\_lam}$   | angstrom               | Real4                  | 0: 400.0        | wavelength (lambda)                    |  |  |
| 12                             | $\operatorname{tg\_mlam}$  | angstrom               | Real4                  | -400.0:400.0    | Order times wavelength (m * lambda)    |  |  |
| 13                             | $\operatorname{tg\_srcid}$ |                        | $\operatorname{Int} 2$ | 0.32767         | source ID, index from detect table     |  |  |
| 14                             | $tg\_part$                 |                        | $\operatorname{Int} 2$ | 0.99            | HEG, MEG, LEG, HESF regions            |  |  |
| 15                             | $tg\_smap$                 |                        | $\operatorname{Int} 2$ | 0.32767         | source map; flags for up to 10 sources |  |  |
| 16                             | $\mathrm{status}[4]$       |                        | Bit(4)                 |                 | event status bits                      |  |  |

XMM RGS data reduction uses the same concepts as Chandra, but the SAS software bundles the commands more than the CIAO software. For example, here is a thread to re-reduce an RGS observation:

#### Make lightcurve to check for flares

evselect table=rgs1\_evt1.fits:EVENTS withrateset=yes
rateset=rgs1\_ltcrv.fits maketimecolumn=yes timecolumn=TIME
timebinsize=10

Examine lightcurve; assume here we use the entire dataset. So, rerun standard processing to pick up the latest calibration data:

```
odfingest odfdir=SAS\_ODF outdir =SAS\_ODF rgsproc orders='1 2' withgtiset=no
```

#### Now make the RMF

```
rgsrmfgen file=rgs1_o1.rmf set=rgs1_evt1.fits
withspectrum=yes spectrumset=0226_0021750101_R1S00700_net1o1.pha
sourceset=0226_0021750101_R1S00700_sources.ds emin=0.3 emax=2.8 ebins=4000
```

A side note: Because of the design of the RGS, the line profile has substantial wings. As a result, proper RGS analysis **requires** that an RMF be used. Not using an RMF will lead to systematically smaller line flux measurements.

## Backgrounds

For bright sources on ACIS-S, the background is likely negligible. However, in the HRC-S it is usually large, and a faint source on the ACIS-S can have a significant background.



Source/Background Regions for the LETG/HRC

The background is extracted in two regions: above the grating arm (background\_up) and below it (background\_down). The default spectrum widths are given in the tgextract help file. There are two backgrounds because the geometry is not necessarily symmetric, especially for HETGS near the zero-order, or if there are other sources in the field.

It is up to the user to decide how (and whether) to combine and apply these background arrays; by default in Sherpa they are averaged, although this may not be the best method for all wavelengths.

The area in the background extraction region is usually larger than that in the source region, so each PHA2 file has three keywords BACKSCAL, BACKSCUP, BACKSCDN, which scale the background counts arrays to represent the expected background counts in each of the source, BACKGROUND\_UP, and BACKGROUND\_DOWN regions.

## ACIS Continuous Clocking

ACIS can be run in Continuous-Clocking (CC) mode for high time resolution. Spatial information in the cross-dispersion direction is lost in this mode.

We can still process HETGS data, however, into binned MEG and HEG spectra. In this mode, orders still separate according to pulse-height.

The odd-orders' pulse-height regions are unambiguously from MEG. If even, we assume to be HEG since MEG even order efficiency is low (e.g., MEG "2nd" order is really mostly HEG 1st; MEG "4th" is really HEG 2nd, and so on).

The pipeline applies an iterative step in processing CC-mode, first assuming events are from MEG, and guessing the CHIPY position given the zero-order position and CHIPX, then if the order is odd, it reresolves it assuming HEG.

Relatively few observations have been done using ACIS-CC with gratings; as a result, calibration of the line shape function and effective area in this mode is not as developed as other modes.

Unfortunately, not every X-ray object as bright as Capella, NGC6624. In these cases, you might wish to co-add the grating data to increase the number of counts per bin. This will, of course, increase the number of calibration issues with the data.

There are four choices:

- 1. Co-add plus/minus orders of the same grating. Can broaden lines if zero-order is offset.
- 2. Co-adding HEG and MEG data. Complicates line shape function.
- 3. Co-adding separate observations. Instrumental background can vary, plus same issues of zero-order offsets
- 4. Co-adding separate obs and instruments. All of the above

In many cases, however, the calibration issues are either not a problem or are an "acceptable risk." In this case, CIAO provides a number of tools:

### Adding together plus, minus orders

```
add_grating_orders pha2=acisf00459N002_pha2.fits order=1 garm=MEG garfm=acisf00459MEG_-1_garf.fits garfp=acisf00459MEG_1_garf.fits gtype=BIN gspec=10 root=459
```

### Adding together same orders, different observations

```
add_grating_spectra pha1=2463_MEG_1_BIN10.pha
pha2=459_MEG_1_BIN10.pha garf1=2463_MEG_1.arf
garf2=459_MEG_1.arf gtype=BIN gspec=10 root=3C273_summed
```

Consider the HMXB X Per, observed for 50 ksec with the HRC/LETG. The raw data looks as follows (without error bars!) :



We can co-add and bin this data with add\_grating\_orders to increase the number of counts/bin:

```
add_grating_orders pha2=hrc_pha2.fits order=1 garm=LEG \
   garfm=x_perLEG_-1_garf.fits garfp=x_perLEG_1_garf.fits \
   gtype=BIN gspec=10 root=xper
```



With low or moderate resolution data, forward-folding models and comparing to the data is the only analysis possible. With grating data, this becomes optional depending on the analysis needs. If the inherent resolution of the gratings is kept in mind (HEG: 0.012Å, MEG: 0.023Å, LEG: 0.05Å), analysis of a fluxed spectrum using any tool is entirely reasonable.

However, many standard X-ray models are available only in Sherpa, XSPEC, or ISIS and so using these programs for grating analysis is common. All that is needed is the spectral data (pha2) file and the grating arf (and possibly rmf) files:

## A sample sherpa session:

```
unix% sherpa
sherpa> data acis_pha2.fits
sherpa> paramprompt off
sherpa> rsp[hm1]
sherpa> rsp[hp1]
sherpa> rsp[mm1]
sherpa> rsp[mp1]
sherpa> hm1.rmf = acisheg1D1999-07-22rmfN0004.fits
sherpa> hm1.arf = acisf01318HEG_-1_garf.fits
sherpa> hp1.rmf = acisheg1D1999-07-22rmfN0004.fits
sherpa> hp1.arf = acisf01318HEG_1_garf.fits
sherpa> mm1.rmf = acismeg1D1999-07-22rmfN0004.fits
sherpa> mm1.arf = acisf01318MEG_-1_garf.fits
sherpa> mp1.rmf = acismeg1D1999-07-22rmfN0004.fits
sherpa> mp1.arf = acisf01318MEG_1_garf.fits
sherpa> instrument 3 = hm1
sherpa> instrument 4 = hp1
sherpa> instrument 9 = mm1
sherpa> instrument 10= mp1
sherpa> ignore allsets all
sherpa> notice allsets wave 14.9:15.4
sherpa > source 3,4,9,10 = poly[b1] + delta1d[11] + delta1d[12] + delta1d[13]
sherpa > 11.pos = 15.014
sherpa > 12.pos = 15.079
sherpa > 13.pos = 15.2610
sherpa> freeze l1.pos
sherpa> freeze 12.pos
sherpa> freeze 13.pos
sherpa> fit
sherpa> lp 4 fit 3 fit 4 fit 9 fit 10
sherpa> import(''guide'')
sherpa> mdl2latex
\begin{tabular}{1111111}
ModelName & Line Model & Position & Flux & Flux Error & Fit Data & Label \\
& & Angstrom & ph/cm$^2$/s & ph/cm$^2$/s & \\
11 & delta1d & 15.014 & 0.00308923 & 6.7101e-05 & 3,4,9,10 & \\
12 & delta1d & 15.079 & 0.000270431 & 2.81612e-05 & 3,4,9,10 & \\
13 & delta1d & 15.261 & 0.00125857 & 4.79625e-05 & 3,4,9,10 & \\
\end{tabular}
```

And the results are shown here.  $lp\ 4$  fit 3 fit 4 fit 9 fit 10 gives



while the mdl2latex command gives the table:

| ModelName | Line Model | Position | Flux           | Flux Error      | Fit Data | Label |
|-----------|------------|----------|----------------|-----------------|----------|-------|
|           |            | Angstrom | $ m ph/cm^2/s$ | $\rm ph/cm^2/s$ |          |       |
| l1        | delta1d    | 15.014   | 0.00308923     | 6.7101 e-05     | 3,4,9,10 |       |
| 12        | delta1d    | 15.079   | 0.000270431    | 2.81612e-05     | 3,4,9,10 |       |
| 13        | delta1d    | 15.261   | 0.00125857     | 4.79625 e - 05  | 3,4,9,10 |       |

Alternatively (or in conjunction), ISIS can be used in Sherpa or standalone. ISIS was developed by the MIT grating team, and is particularly good for thermal plasma analysis:

```
unix% sherpa
sherpa> import("isis");
sherpa> load_data("acis_pha2.fits");
sherpa> plasma(aped);
sherpa> load_arf("acisf01318MEG_-1_garf.fits")
sherpa> assign_arf(1,9);
sherpa> flux_corr(9,2);
sherpa> d = get_data_counts (9);
sherpa> load_model("model.dat");
sherpa> fl = model_spectrum (d.bin_lo, d.bin_hi);
sherpa> g = brightest(10, where (wl(10,12)));
sherpa> id = open_plot("isis_capella.ps/vcps");
sherpa> resize(15);
sherpa> xrange(10,12);
sherpa> plot_data_counts(9);
sherpa> plot_group(g);
sherpa> close_plot(id);
```



## S-lang, Sherpa, and ISIS: Easy user-defined models

Using S-lang, we can create a new power-law model quite easily:

```
define slang_pow() {
  variable p, norm, Emin, Emax, dE, Result;
  if (NARGS == 3) (p, norm, Emin) = ();
  if (_NARGS == 4) {
     (p, norm, Emin, Emax) = ();
     dE = Emax - Emin;
  }
  if (\_NARGS == 3) Result = norm*(E^(-p));
  if (NARGS == 4) Result = norm*(E^(-p))*dE;
  Result = typecast(Result, _typeof(Emin));
  return Result;
}
() = sherpa_register_model("slang_pow",["power","norm"], 1,
                           [1.0,1.e-2], % default values
                           [-10,1.e-20], % Minimum values
                           [10,1.e5],
                                         % Maximum values
                           [1,1]);
                                         % Both thawed by default
```

Some details: Sherpa allows models to be run either "integrated" or not integrated; this means that either single points or a bin range may be passed to the S-lang function, depending on the data in use and the user's choice. So we must allow for either 3 or 4 arguments here.

Also, although the *ISIS* code can be run stand-alone, as of CIAO 2.2, it can also be incorporated into Sherpa directly (import("isis")). Using a routine similar to the above, we can combine ISIS's ability to make thermal plasma models for any ion or set of ions (at any resolution) with Sherpa's sophisticated statistics and fitting algorithms, to fit arbitrarily complex models.

GUIDE is a collection of S-lang scripts whose purpose is to simplify access to the atomic database ATOMDB, which is itself a combination of the astrophysical plasma emission code (APEC) spectral calculations and the astrophysical plasma emission database (APED). GUIDE provides almost entirely informational functions:

identify Print finding chart of wavelengths
strong List strong lines at a given temperature
describe Describe atomic parameters of a line
mdl2latex Convert fit parameters into a latex table
ionbal Output ionization balance values for a given ion.

These routines can be found in the directory \$ASCDS\_BIN/interpreted/. GUIDE can be run in either Sherpa or Chips, and is initialized in either case with the command

import("guide")

The GUIDE command identify outputs line lists over a user-specified spectral range, along with an expected emissivity for each:

| $\lambda(\text{Å})$ | Ion      | Upper | Lower | Emissivity | kT    | RelInt |
|---------------------|----------|-------|-------|------------|-------|--------|
| 13.4403             | Fe XX    | 158   | 9     | 2.23e-18   | 0.862 | 0.005  |
| 13.4440             | Fe XX    | 116   | 8     | 8.75e - 18 | 0.862 | 0.022  |
| 13.4440             | Fe XXII  | 17    | 8     | 2.24e - 17 | 1.085 | 0.055  |
| 13.4473             | Ne IX    | 7     | 1     | 4.06e-16   | 0.343 | 1.000  |
| 13.4510             | Fe XVIII | 67    | 1     | 1.23e-17   | 0.685 | 0.030  |
| 13.4550             | Ne IX    | 10205 | 19    | 1.74e - 18 | 0.273 | 0.004  |
| 13.4550             | Ne IX    | 10206 | 20    | 3.12e-18   | 0.273 | 0.008  |

And of course more information on any given transition is available with the describe command:

#### Ion Ne IX, energy level 1 —

electron configuration :  $1s^2$   $^1S_0$  energy above ground (eV) : 0.000000

Quantum state : n=1, l=N/A, s=0, degeneracy=1

Energy level data source : 1983ADNDT..29..467S Photoionization data source : 1986ADNDT..34..415C

#### Ion Ne IX, energy level 7 —

electron configuration :  $1s2p \ ^1P_1$  energy above ground (eV) : 922.609985

Quantum state : n=2, l=1, s=0, degeneracy=3

Energy level data source : 1983ADNDT..29..467S Photoionization data source : 1986ADNDT..34..415C

#### Ion Ne IX, 1 - 7 interactions —

Electron collision rate from  $1 \rightarrow 7$ : nonzero.

Reference bibcode : 1983ADNDT..29..467SWavelength (lab/observed) (Angstrom) : 13.447307 +/-0.004000

Wavelength (theory) (Angstrom) : 13.470000Transition rate/Einstein A (s<sup>-1</sup>) : 8.866670e+12

Wavelength (lab/observed) reference : 1988CaJPh..66..586D Wavelength (theory) reference : 1983ADNDT..29..467S Transition rate reference : 1987JPhB...20.6457F

## Given a "base" temperature, what lines should be strong?

sherpa> strong(1.e7, 5.e-17, 5, 25)

The listed "Approximate Emissivity" is scaled from the peak value using the ratio of the ionization balance at the requested temperature and the peak temperature for the line.

```
Approximate
                                                 RelInt For More Info
 Lambda
             Ion
                     UL -
                           LL Emissivity@
                                             kΤ
Angstrom
                                 ph cm^3/s
                                             keV
  6.1804
            Si XIV
                       4-
                             1 5.21e-17 @ 0.862 0.104 describe(14,14,4,1)
  6.6479
           Si XIII
                       7-
                             1 8.77e-17 @ 0.862 0.175 describe(14,13,7,1)
                       4-
                             1 6.99e-17 @ 0.862 0.140 describe(12,12,4,1)
  8.4192
            Mg XII
  9.4797
            Fe XXI
                     248-
                             1 5.47e-17 @ 0.862 0.109 describe(26,21,248,1)
                      20-
                             5 8.39e-17 @ 0.862 0.168 describe(26,23,20,5)
 11.7360
          Fe XXIII
 11.7700
           Fe XXII
                      21-
                               1.94e-16 @ 0.862 0.388 describe(26,22,21,1)
 12.1321
              Ne X
                       4-
                               9.14e-17 @ 0.862 0.183 describe(10,10,4,1)
 12.2840
            Fe XXI
                      40-
                               5.01e-16 @ 0.862 1.000 describe(26,21,40,1)
            Fe XXI
                      40-
 12.3930
                             2 9.01e-17 @ 0.862 0.180 describe(26,21,40,2)
 12.7540
           Fe XXII
                      23-
                             6 7.17e-17 @ 0.862 0.143 describe(26,22,23,6)
                               6.62e-17 @ 0.862 0.132 describe(26,21,83,7)
 12.8220
            Fe XXI
                      83-
 12.8240
             Fe XX
                      60-
                               1.16e-16 @ 0.862 0.231 describe(26,20,60,1)
             Fe XX
                      58-
                               2.83e-16 @ 0.862 0.565 describe(26,20,58,1)
 12.8460
 12.8640
             Fe XX
                      56-
                               2.36e-16 @ 0.862 0.471 describe(26,20,56,1)
             Fe XX
                      48-
 12.9650
                               8.77e-17 @ 0.862 0.175 describe(26,20,48,1)
 13.3850
             Fe XX
                     111-
                             6 6.57e-17 @ 0.862 0.131 describe(26,20,111,6)
 13.4970
            Fe XIX
                      71-
                             1 8.00e-17 @ 0.862 0.160 describe(26,19,71,1)
            Fe XXI
                      42-
 13.5070
                               1.16e-16 @ 0.862 0.231 describe(26,21,42,7)
 13.5180
            Fe XIX
                      68-
                               1.76e-16 @ 0.862 0.352 describe(26,19,68,1)
             Fe XX
                      19-
                             1 5.56e-17 @ 0.862 0.111 describe(26,20,19,1)
 13.7670
 13.7950
            Fe XIX
                      53-
                               7.07e-17 @ 0.862 0.141 describe(26,19,53,1)
 14.0080
            Fe XXI
                      28-
                               9.31e-17 @ 0.862 0.186 describe(26,21,28,7)
                      55-
 14.2080
          Fe XVIII
                             1 7.00e-17 @ 0.862 0.140 describe(26,18,55,1)
                      56-
                               1.28e-16 @ 0.862 0.256 describe(26,18,56,1)
 14.2080
          Fe XVIII
 14.2670
             Fe XX
                      54-
                             6 8.93e-17 @ 0.862 0.178 describe(26,20,54,6)
 14.3730
          Fe XVIII
                      49-
                               5.04e-17 @ 0.862 0.101 describe(26,18,49,1)
 14.6640
            Fe XIX
                      15-
                               5.34e-17 @ 0.862 0.107 describe(26,19,15,1)
                      33-
 14.7540
             Fe XX
                             6 5.26e-17 @ 0.862 0.105 describe(26,20,33,6)
                      27-
 15.0140
           Fe XVII
                             1 1.00e-16 @ 0.862 0.200 describe(26,17,27,1)
 15.0790
            Fe XIX
                      11-
                               6.02e-17 @ 0.862 0.120 describe(26,19,11,1)
                       4-
 16.0710
          Fe XVIII
                             1 5.85e-17 @ 0.862 0.117 describe(26,18,4,1)
 16.1100
            Fe XIX
                      37-
                             6 7.83e-17 @ 0.862 0.156 describe(26,19,37,6)
 17.0510
           Fe XVII
                       3-
                             1 5.54e-17 @ 0.862 0.111 describe(26,17,3,1)
 17.0960
           Fe XVII
                       2-
                             1 5.27e-17 @ 0.862 0.105 describe(26,17,2,1)
            O VIII
                       4-
 18.9671
                               1.22e-16 @ 0.862 0.244 describe(8,8,4,1)
 18.9725
            O VIII
                       3-
                               5.88e-17 @ 0.862 0.118 describe(8,8,3,1)
```

- Reprocessing grating data is no longer absolutely required, but has gotten far easier and provides a sense of confidence about the data.
- Co-Adding and/or binning grating data should be avoided when possible. Remember that, statistically, nothing is gained by it, although it may be much faster to fit it and easier to see the results.
- Background subtraction is handled in Sherpa in a reasonable fashion, but more complex, wavelength-dependent subtraction could be done as well. User experimentation is recommended if the data warrant it.
- A number of new facilities for atomic data analysis have been created for Sherpa and ISIS (and are in the new version of XSPEC as well). However, remember to check the caveats on this data before trusting it totally! For the ATOMDB, they are at

http://asc.harvard.edu/atomdb/doc/caveats.html