
Compute LETG/HRC-I Grating ARFs

CIAO 3.4 Science Threads

Table of Contents

- Get Started
- Determine Orders
- Compute the Aspect Histogram (asphist)
- Get Source Position (dmlist)
- Run mkgarf
 - A. For row 1, LEG, order = -1
 - B. For row 2, LEG, order = 1
- <u>Summary</u>
- Parameter files:
 - ♦ <u>asphist</u>
 - ♦ mkgarf
- History
- Images
 - ♦ PHA2 file displayed in prism
 - ♦ The +1 order plotted over the −1 order

2 Table of Contents

Compute LETG/HRC-I Grating ARFs

CIAO 3.4 Science Threads

Overview

Last Update: 1 Dec 2006 – updated for CIAO 3.4: CIAO version in warning; ChIPS version; parameter file updates for mkgarf

Synopsis:

mkgarf creates a grating ARF for a particular order and grating of an observation.

Purpose:

To create grating ARFs for an LETG/HRC–I observation.

Read this thread if:

you are working with an LETG/HRC-I observation and intend to model and fit the spectra in Sherpa.

Calibration Updates:

• <u>CALDB v2.17</u> (1 Oct 2002): A new HRC <u>OE</u> file (hrciD1999-07-22qeN0006.fits) was added to the CALDB. This file will automatically be picked up by the tool <u>mkgarf</u> via <u>ardlib.par</u>.

Related Links:

• <u>Analysis Guide for Chandra High Resolution Spectroscopy</u>: an in-depth discussion of grating analysis.

Proceed to the <u>HTML</u> or hardcopy (PDF: <u>A4 | letter</u>) version of the thread.

Get Started

Sample ObsID used: 1801 (LETG/HRC-I, PKS2155-304)

File types needed: evt2; pha2; asol1; bpix1; dtf1

If you created a new bad pixel file by running the <u>Creating a New Observation–Specific HRC Bad Pixel File</u> thread, make sure that you have <u>set up ardlib</u> to use the same bad pixel file.

Last modified: 1 Dec 2006

Determine Orders

An ARF needs to be calculated for each order in the observation. We can use <u>Prism</u> to examine the pha2 file and determine how many orders there are:

```
unix% prism hrcf01801N002_pha2.fits &
```

The tg_m column indicates the order of the observation (+/-1, +/-2, +/-3) and the tg_part column indicates the grating (1 = HEG, 2 = MEG, 3 = LEG). In this example the two rows for the LETG observation. HRC-I cannot resolve orders; +/-1 refer to the total positive- and negative-side counts respectively.

Compute the Aspect Histogram (asphist)

The aspect solution files are used to create a binned histogram detailing the aspect history of the observation:

```
unix% punlearn asphist
unix% pset asphist infile=pcadf082337011N002_asol1.fits
unix% pset asphist outfile=asphist.fits
unix% pset asphist evtfile="hrcf01801N003_evt2.fits[chip_id=0]"
unix% pset asphist dtffile=hrcf01801_000N003_dtf1.fits
unix% asphist
Aspect Solution List Files (pcadf082337011N002_asol1.fits):
Aspect Histogram Output File (asphist.fits):
Event List Files (hrcf01801N003_evt2.fits[chip_id=0]):
Live Time Correction List Files for HRC (hrcf01801_000N003_dtf1.fits):
# asphist (CIAO 3.4): WARNING: skipping 8 livetime correction records (from time: 82336842.920687 to time: 82337011.020694)
```

In many cases there will be more than one asol1.fits file for an observation. *All* the files must be input to the <u>infile</u> parameter, either as a list or as a stack (see <u>ahelp stack</u> for more information).

The content of the parameter file may be checked using plist asphist.

Get Source Position (dmlist)

The source position is required as one of the inputs to mkgarf. This information can be easily obtained from the PHA2 file with <u>dmlist</u>:

```
unix% dmlist "hrcf01801N003_pha2.fits[SPECTRUM][cols x,y]" opt=data rows=1

Data for Table Block SPECTRUM

ROW X Y
```

4 Determine Orders

```
1 16511.480468750 16367.2802734375
```

The source in this example is located at (16511.480468750, 16367.2802734375).

Run mkgarf

Now we have all the information needed to run <u>mkgarf</u>. We will have to run the tool twice, once for each row in the PHA file:

A. For row 1, LEG, order = -1

```
unix% punlearn mkgarf
unix% pset mkgarf outfile=1801_-1_LEG_garf.fits
unix% pset mkgarf order=-1
unix% pset mkgarf asphistfile="asphist.fits[ASPHIST]"
unix% pset mkgarf engrid="grid(rmf.fits[cols ENERG_LO,ENERG_HI])"
unix% pset mkgarf detsubsys=HRC-I grating_arm=LEG
unix% pset mkgarf sourcepixelx=16511.480468750 sourcepixely=16367.2802734375
unix% mkgarf
Aspect Histogram File (include extension) (asphist.fits[ASPHIST]):
Output File Name (1801_-1_LEG_garf.fits):
Enter Grating order (-1):
Source X Pixel (16511.48046875):
Source Y Pixel (16367.2802734375):
Energy grid spec (grid(rmf.fits[cols ENERG_LO,ENERG_HI])):
Name of fits file with obs info (include extension))asphistfile -> asphist.fits[ASPHIST]):
NONE or Name of fits file with order sorting info (NONE):
Detector Name (HRC-I):
Enter Grating Arm (HEG MEG LEG) (LEG):
NONE, or name of ACIS window mask file (NONE):
```

B. For row 2, LEG, order = 1

```
unix% pset mkgarf order=1
unix% pset mkgarf outfile=1801_1_LEG_garf.fits
unix% mkgarf
Aspect Histogram File (include extension) (asphist.fits[ASPHIST]):
Output File Name (1801_1_LEG_garf.fits):
Enter Grating order (1):
Source X Pixel (16511.48046875):
Source Y Pixel (16367.2802734375):
Energy grid spec (grid(rmf.fits[cols ENERG_LO,ENERG_HI])):
Name of fits file with obs info (include extension))asphistfile -> asphist.fits[ASPHIST]):
NONE or Name of fits file with order sorting info (NONE):
Detector Name (HRC-I):
Enter Grating Arm (HEG|MEG|LEG) (LEG):
NONE, or name of ACIS window mask file (NONE):
```

The content of the parameter file may be checked using plist mkgarf.

Run mkgarf 5

Summary

The thread is now complete; the grating ARFs for this dataset are 1801_-1_LEG_garf.fits and 1801_1_LEG_garf.fits. Since this source is at the aimpoint/on-axis, the two garfs are nearly identical; this plot shows the +1 order plotted on top of the -1 order. This is normal and is due to the fact that the detector is symmetric, flat, and has no holes or filter boundaries. Also, the HRC-I QEU file is fairly uniform. Off-axis observations will not have such a high degree of similarity between the -1 and +1 orders.

Parameters for /home/username/cxcds_param/mkgarf.par

```
asphistfile = asphist.fits[ASPHIST] Aspect Histogram File (include extension)
       outfile = 1801_1_LEG_garf.fits Output File Name
                                      Enter Grating order
  sourcepixelx = 16511.48046875 Source X Pixel
  sourcepixely = 16367.2802734375 Source Y Pixel
         engrid = grid(rmf.fits[cols ENERG_LO,ENERG_HI]) Energy grid spec
        obsfile = )asphistfile -> asphist.fits[ASPHIST] Name of fits file with obs info (include extension)
#engrid,f,a,"0.3:10:0.1",,,"Energy grid spec"
#engrid,f,a,"grid(rmf.fits[cols ENERG_LO,ENERG_HI])",,,"Energy grid spec"
                          NONE or Name of fits file with order sorting info
NONE, or name of ACIS window mask file
Detector Name
Enter Grating Arm
      osipfile = NONE
      maskfile = NONE
     detsubsys = HRC-I
   grating_arm = LEG
                                Mirror Name

NONE, or the name of the parameter block file

NONE, CALDB, or name of ACIS dead-area calibra(ardlibparfile = ardlib.pa:

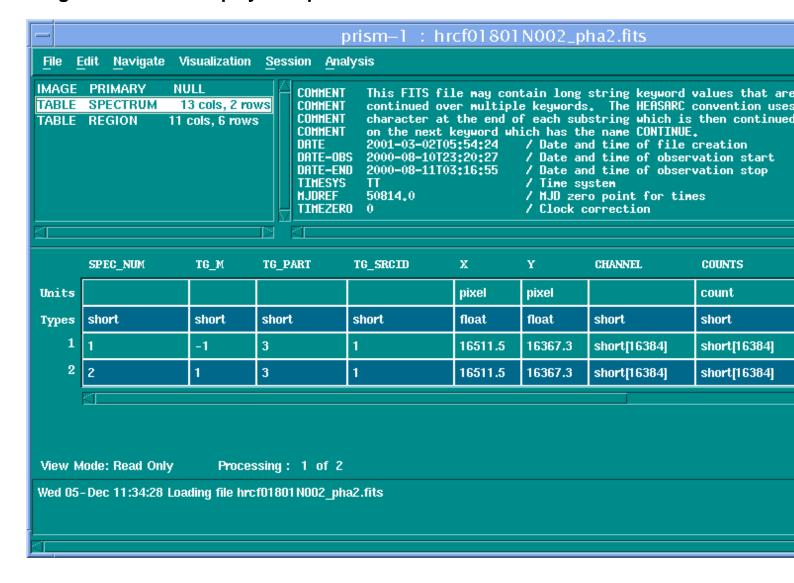
Parameter file for Pixlib Geometry files

Verbosity
        (mirror = hrma)
       (pbkfile = NONE)
       (dafile = NONE)
       (geompar = geom)
       (verbose = 0)
                                     Verbosity
                                 Overwrite existing files?
       (clobber = no)
          (mode = ql)
                                     Enter mode for parameter file.
```

6 Summary

History

- 22 Dec 2004 updated for CIAO 3.2: minor changes to parameter files; canned gARFs are no longer available in the CALDB, removed "Choosing an RMF" section
- 20 Jun 2005 CIAO 3.2.2 patch: change to asphist parameter file
- 06 Dec 2005 updated for CIAO 3.3: new asphist tool syntax (the GTI filter is associated with the event file instead of the aspect solution file)


Last modified: 1 Dec 2006

01 Dec 2006 updated for CIAO 3.4: CIAO version in warning; ChIPS version; parameter file updates for mkgarf

URL: http://cxc.harvard.edu/ciao/threads/mkgarf letghrci/

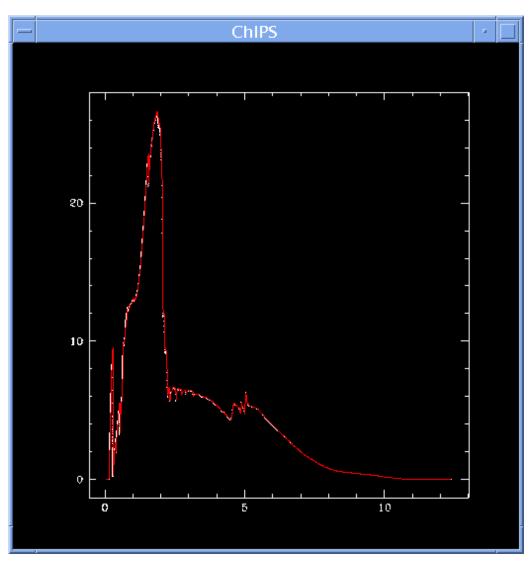

History 7

Image 1: PHA2 file displayed in prism

8

The following *ChIPS* session was used to create the plot:

```
unix% chips

Welcome to ChIPS, version CIAO 3.4

Copyright (C) 1999-2003, Smithsonian Astrophysical Observatory

chips> curve "1801_-1_LEG_garf.fits[cols ENERG_HI,SPECRESP]"

chips> symbol point

chips> curve "1801_1_LEG_garf.fits[cols ENERG_HI,SPECRESP]"

chips> curve simpleline

chips> symbol none

chips> curve red
```

Compute LETG/HRC-I Grating ARFs - CIAO 3.4