Creating Higher-order Responses for HRC-S/LETG Spectra

CIAO 3.4 Science Threads

Table of Contents

- Explanation
- Example Analyses
- Continuum
- Line Spectrum
- Related Threads
- History
- Images
- Plot of positive-order spectrum. ObsId 460

Creating Higher-order Responses for HRC-S/LETG Spectra

CIAO 3.4 Science Threads

Overview

Last Update: 1 Dec 2006 - reviewed for CIAO 3.4: no changes

Synopsis:

Because of the low energy resolution in the HRC-S, the PHA2 file contains only two rows (negative and positive) containing all the spectral orders. While it is not possible to separate the overlapping orders, CIAO can make response files (gRMFs and gARFs) for higher orders (m up to 10), allowing you to model them in Sherpa.

Deciding how many orders to include may not be simple. The best advice is to use the empirical approach, and keep adding one or two orders at a time to your analysis until variations in fit results reach the level of other uncertainties. If nothing else, this will provide an enhanced appreciation for the level of systematic uncertainties in your analysis. This is also a good approach to use because the computational load on Sherpa steadily increases as orders are added.

Purpose:

This thread describes how to estimate the importance of higher orders when analyzing LETG/HRC-S spectra, so that one can at least determine the minimum number of orders with which to start. Keep in mind that the spectrum of order m has m times the dispersion of 1 st order, i.e., continuum is more spread out in terms of mm / \AA on the detector. Likewise, resolved lines will become broader (in mm) as the order increases.

Proceed to the HTML or hardcopy (PDF: $\underline{\text { A4 }} \mid \underline{\text { letter }) ~ v e r s i o n ~ o f ~ t h e ~ t h r e a d . ~}$

Explanation

The number of counts at the single detector position m » is equal to the sum of counts from 1st order (at emitted wavelength »), 2nd order (at »/2), 3rd order (»/3), etc. This can be written as

$$
\begin{gathered}
I(m \gg)=f(>) A_{1}(>)+f(>/ 2) A_{2}(>/ 2)+f(>/ 3) A_{3}(>/ 3)+f(>/ 4) A_{4}(>/ 4)+\ldots \\
=\mathfrak{f}_{m} f(>/ m) A_{m}(>/ m)
\end{gathered}
$$

where I is the intensity (counts $/ \mathrm{s} / \AA$) observed at a given location on the detector, f is the source flux (photons $/ \mathrm{s} / \mathrm{cm}^{\wedge} 2 / \AA$) at a specific wavelength, and A_{m} is the LETG/HRC-S effective area (cm^{\wedge}) for order m at
that wavelength.
This can be rewritten for integrated line intensities (in cts/s) as

$$
\begin{gathered}
L(m \gg)=L(»)+L(>/ 2)\left[A_{2}(>/ 2) / A_{1}(>)\right]+L(>/ 3)\left[A_{3}(>/ 3) / A_{1}(>)\right]+\ldots \\
=\mathfrak{£}_{m} L(>/ m)\left[A_{m}(>/ m) / A_{1}(\gg)\right]
\end{gathered}
$$

and for continuum (cts/s/Å) as

$$
\begin{gathered}
C(m »)=C(»)+(1 / 2) C(» / 2)\left[A_{2}(>/ 2) / A_{1}(>)\right]+(1 / 3) C(>/ 3)\left[A_{3}(>/ 3) / A_{1}(>)\right]+\ldots \\
=\mathfrak{£}_{m}(1 / m) C(» / m)\left[A_{m}(>/ m) / A_{1}(>)\right] .
\end{gathered}
$$

(Recall that the extra $1 / m$ factor for the continuum equation is because continuum intensity is measured per unit wavelength, and the dispersion of higher-order spectra is proportional to m. Line intensities are integrated, so broadening doesn't matter for them.)

In the above equations, the only directly measured intensity is $L(m »)$ or $C(m »)$, but as long as most of the counts at a given m » come from 1st order, one can estimate the contribution of each order in the m » spectrum, as shown in the examples. The effective areas, A_{m}, can be read from these plots.

[PostScript file of this plot]
Note that the two plots contain the same information, but present it differently: m » vs » for the x -axis.
At any wavelength, the combined effective area of orders beyond $m=10$ is at most a few percent of the 1 st order EA unless nearly all of the source's emission is between 6 and $17 \AA$, in which case the observer would almost certainly want to use the HETG with ACIS-S.

Example Analyses

Continuum

Here we use ObsId 460 (LETG/HRC-S, 3C 273) to illustrate the steps. This plot of the positive-order spectrum has the wavelengths we will focus on marked with a red "X".

1. 3rd order often provides the strongest higher-order contamination, so we begin with that, looking at m » $=$ $90 \AA$, which has contributions from 1st order $(90 \AA)$, 2 nd order ($45 \AA$ A), 3rd order ($30 \AA$), etc.
2. The 3 rd order contribution is approximately equal to $(1 / 3) C(» / 3)\left[A_{3}(» / 3) / A_{1}(»)\right]$. There are about 4 counts/bin at $90 \AA\left(C(»)\right.$ and 60 at $30 \AA\left(C(» / 3)\right.$. From the effective area plots, $A_{1}(90 \AA)=8 \mathrm{~cm}^{\wedge} 2$ and $A_{3}(30 \AA)=1.1 \mathrm{~cm}^{\wedge} 2$, so 3 rd order contributes $(1 / 3)(60$ counts $)\left(1.1 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=2.8$ of the total of 4 counts/bin.
3. Similarly, the number of counts/bin from other orders is:

- 2nd: $(1 / 2)(60$ counts at $45.0 \AA)\left(0.8 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=3.0$
- 4th: $(1 / 4)(70$ counts at $22.5 \AA)\left(0.5 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=1.1$
- 5th: $(1 / 5)(100$ counts at $18.0 \AA)\left(0.5 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=1.2$
- 6th: $(1 / 6)(120$ counts at $15.0 \AA)\left(0.7 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=1.8$
-7th: $(1 / 7)(120$ counts at $12.9 \AA)\left(0.3 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=0.6$

Creating Higher-order Responses for HRC-S/LETG Spectra - CIAO 3.4

- 8th: $(1 / 8)(120$ counts at $11.2 \AA)\left(0.6 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=1.1$
- 9th: $(1 / 9)(130$ counts at $10.0 \AA)\left(0.35 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=0.6$
- 10th: $(1 / 10)(150$ counts at $9.0 \AA)\left(0.35 \mathrm{~cm}^{\wedge} 2 / 8 \mathrm{~cm}^{\wedge} 2\right)=0.7$

In this case, orders $2-10$ contribute an estimated total of more than 12 counts/bin. The fact that this is higher than the observed total of 4 counts/bin simply means that higher orders are also important at shorter wavelengths, thus inflating the apparent spectral intensity at $» / m$ and leading to overestimates of higher-order contributions at $»$. In this extreme example, higher orders contribute virtually all the flux at long wavelengths (beyond roughly $70 \AA$), and spectral fitting at those wavelengths will be of dubious quality.

Line Spectrum

For this example we refer to the coronal line spectrum of Capella, as shown in Figure 9.25 of the POG (from Brinkman et al. 2000, ApJ, 530, L111).

1. Say we want to analyze the region around $45 \AA$, which may contain 2 nd order features from $22 \AA$, 3 rd order from $15 \AA$, etc. There is a strong line at $15.02 \AA$ so we focus on 3 rd order.
2. The 3 rd order contribution is approximately equal to $L(15.02 \AA)\left[A_{3}(15.02 \AA) / A_{1}(45.06 \AA)\right]$. From Brinkman et al., the intensity of the $15.02 \AA$ line is $44.2 \mathrm{cts} / \mathrm{ks}$. From the effective area plots, $A_{1}(45 \AA)=$ $25 \mathrm{~cm}^{\wedge} 2$ and $A_{3}(15 \AA)=2.5 \mathrm{~cm}^{\wedge} 2$, so the 3 rd order line at m » should have an intensity of (44.2 $\mathrm{cts} / \mathrm{ks})\left(2.5 \mathrm{~cm}^{\wedge} 2 / 25 \mathrm{~cm}^{\wedge} 2\right)=4.4 \mathrm{cts} / \mathrm{ks}$. Indeed, Brinkman et al. measure $4.2 \mathrm{cts} / \mathrm{ks}$, which is nearly as large as the 1 st order intensity of the Si XII line at $44.16 \AA$.
3. Similarly, 5 th order of the $9.169 \AA \mathrm{Mg}$ XI line will appear at $45.84 \AA$ with $(6.2 \mathrm{cts} / \mathrm{ks})\left(1.2 \mathrm{~cm}^{\wedge} 2 / 25 \mathrm{~cm}^{\wedge} 2\right)$ $=0.3 \mathrm{cts} / \mathrm{ks}$, probably blending with the $1.9-\mathrm{cts} / \mathrm{ksec}$ Si XII line at $45.68 \AA$. the Si XII line at $44.16 \AA$.
4. The Si XIII line at $6.648 \AA$ is the shortest wavelength feature of any significance, and it would appear in 7 th order at $46.54 \AA$ with $(5.1 \mathrm{cts} / \mathrm{ks})\left(0.35 \mathrm{~cm}^{\wedge} 2 / 25 \mathrm{~cm}^{\wedge} 2\right)=0.07 \mathrm{cts} / \mathrm{ks}$, which is small but perhaps non-negligible depending on the analysis goals.

Related Threads

The following threads show how to create response files for HRC-S/LETG data:

- Create Grating RMFs for HRC Observations
- Compute LETG/HRC-S Grating ARFs

History

10 May 2005 original version, new for CIAO 3.2
06 Dec 2005 reviewed for CIAO 3.3: no changes
02 Nov 2006 added note about orders beyond $\mathrm{m}=10$ in Explanation section
01 Dec 2006 reviewed for CIAO 3.4: no changes

Image 1: Plot of positive-order spectrum, ObsId 460

