Examining Grating Spectra and Regions: PHA2 files

CIAO 3.4 Science Threads

Table of Contents

- What is a PHA2 File?
- Examining the Files with Prism
- ACIS-S HETG/LETG Observations
- HRC-S/HRC-I LETG Observations
- Displaying the Spectrum
- With Prism
- With ChIPS
- With Sherpa
- Displaying the Extraction Regions
- History
- Images
- Prism view of ACIS-S HETG dataset
- Prism view of ACIS-S LETG dataset
- Expanded view of BIN LO column
- Prism view of HRC-S LETG dataset
- Prism view of HRC-I LETG dataset
- View of order +1 spectrum with Prism
- View of order +1 spectrum with ChIPS
- View of order $+/-1$ spectrum with Sherpa: count rate
- View of order $+/-1$ spectrum with Sherpa: counts
- Data with source and background regions overlaid

Examining Grating Spectra and Regions: PHA2 files

CIAO 3.4 Science Threads

Overview

Last Update: 1 Dec 2006 - updated for CIAO 3.4: ChIPS and Sherpa versions

Synopsis:

An overview of displaying grating data Type II PHA files and the source and background extraction regions.

Related Links:

- Analysis Guide for Chandra High Resolution Spectroscopy: an in-depth discussion of grating analysis.

Proceed to the HTML or hardcopy (PDF: $\underline{\mathbf{A 4} \mid \text { letter) version of the thread. }}$

What is a PHA2 File?

A Type II PHA file is a standard FITS format in which each row contains array columns. The PHA file is a product of standard data processing and is identified by the pha2.fits extension; note that the " 2 " in the filename refers to the fact that it is a level=2 data product, not that it is a Type II file. In the case that the user has to manually reprocess an event file (e.g. when applying an updated order sorting table), the PHA2 spectrum file is obtained from the level 2 event file by tgextract; see the Obtain Grating Spectra from HETG/ACIS-S Data for an example of this.

The SPECTRUM block of a PHA2 file has 13 columns of data:

```
ColNo Name
    SPEC_NUM
    TG_M
    TG_PART
    TG_SRCID
    X
    X Y sky coord of source
    CHANNEL[8192]
    COUNTS[8192]
    STAT_ERR[8192]
    BACKGROUND_UP [8192]
    BACKGROUND_DOWN[8192]
    BIN_LO[8192]
    BIN_HI[8192]
```

```
Description
```

Description
Spectrum Number
Spectrum Number
Diffraction order (m)
Diffraction order (m)
Spectral component (HEG, MEG, LEG, HESF parts)
Spectral component (HEG, MEG, LEG, HESF parts)
Source ID, output by tgdetect
Source ID, output by tgdetect
Y sky coord of source
Y sky coord of source
Vector of spectral bin numbers.
Vector of spectral bin numbers.
Counts array (a spectrum)
Counts array (a spectrum)
Statistical uncertainty (error) on counts colum
Statistical uncertainty (error) on counts colum
Upper Background count vector.
Upper Background count vector.
Lower Background count vector.
Lower Background count vector.
Bin boundary, left edge
Bin boundary, left edge
Bin boundary, right edge

```
Bin boundary, right edge
```

There are two columns that are especially relevant when doing analysis:

- TG_M indicates the order of the spectrum (+/- 1, +/-2, +/- 3)
- TG_PART indicates the spectral component / grating arm ($1=\mathrm{HEG}, 2=\mathrm{MEG}, 3=$ LEG $)$

Examining the Files with Prism

Sample ObsIDs used: 459 (HETG/ACIS-S 3C 273); 460 (LETG/HRC-S, 3C 273); 1198 (LETG/ACIS-S, 3C 273); 1800 (LETG/HRC-I, PKS2155-304)

File types needed: evt2; pha2

ACIS-S HETG/LETG Observations

We can use prism to examine the PHA2 file for ObsID 459:
unix\% prism acisf00459N002_pha2.fits \&
which will give you something like Figure 1 For . In this example, there are twelve rows - all the $+/-$ orders for both HEG and MEG - for the observation. The columns CHANNEL, COUNTS, BIN_LO, etc. are all so-called "vector columns"; each contains a vector of elements which, in this example, is 8192 elements long.

An ACIS-S/LETG observation (ObsID 1198)looks similar in Prism but only contains 6 rows (+/- orders for the LEG).

Each vector column can be viewed as follows:
unix\% prism acisf00459N002_pha2.fits \&
left-click on column of interest (to select column)
Navigate menu \rightarrow Expand Column (to expand column)

Figure 3 雨 and shows the (partial) result of the expansion of column BIN_LO.

HRC-S/HRC-I LETG Observations

Examining an HRC-S/LETG observation (ObsID 460) is done in the same way as an ACIS grating observation:
unix\% prism hrcf00460N002_pha2.fits \&
but there is an important difference in the results. As seen in the Prism display fore there are only two rows for the LEG observation. HRC-S cannot resolve orders and the COUNTS in the $+/-1$ order are in fact the total counts of all orders combined. Also, the BIN_LO and BIN_HI columns should be considered for reference only; they actually represent the boundary wavelength of the $+/-1$ order alone, while photons from all orders are included in the spectra.

The same holds true for HRC-I/LETG observations, as seen Figure 5 in the example of ObsID 1800.

Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4

Displaying the Spectrum

With Prism

The quickest way to display one of the spectra of a PHA2 file is with Prism. For example a user who wants to take a quick look at BIN_LO vs. COUNTS for the order +1 (TG_M=1) of the HEG spectrum (TG_PART=1) should do the following (ObsId 459):

```
unix% prism acisf00459NO02_pha2.fits &
middle-click on row #4 (to select spectrum)
left-click on BIN_LO column (to select X-axis column)
left-click on COUNTS column (to select Y-axis column)
Vizualization menu -> Interactive plot (to view the plot)
Vizualization menu -> Print plot (to print the plot)
```

As clearly visible from the output in Figure 6 \%月 , the plot is good for a general overview only (are there enough counts, are there striking features, etc.). At the same time as the plot was created, a ChIPS session was launched by Prism in an xterm window. This window can be used to customize the plot; see the Introduction to ChIPS thread for more information on plotting with ChIPS.

With ChIPS

In order to display a spectrum with ChIPS, we need to separate it out from the PHA2 file (keep in mind that each row of the PHA2 file corresponds to one spectrum):

```
unix% dmtype2split "acisf00459N002_pha2.fits[#row=4]" acisf00459N002_heg_p1.pha
```

The newly created file, which is the +1 order HEG spectrum for this observation, can be used as input to ChIPS:

```
unix% chips
Welcome to ChIPS, version CIAO 3.4
Copyright (C) 1999-2003, Smithsonian Astrophysical Observatory
chips> plot "acisf00459N002_heg_p1.pha[cols bin_lo,counts]"
chips> symbol none
chips> step
chips> xlabel "Wavelength (\AA)"
chips> ylabel Counts
chips> title "ACIS+HEG order=+1"
```

These commands produce the plot shown in Figure 7 用.
An alternative way to read and display a PHA2 spectrum is through S-Lang variables. In this case the PHA2 does not need to be split first. To produce the plot above using S-Lang syntax:

```
chips> clear
chips> pha2 = readbintab("acisf00459N002_pha2.fits")
chips> print(pha2)
_filename = acisf00459N002_pha2.fits
_path = /data/ciao/threads/
_filter = NULL
_filetype = 4
_header = String_Type[190]
_ncols = 13
_nrows = 12
SPEC_NUM = Short_Type[12]
```


Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4

G_M	Short_Type [12]
TG_PART	Short_Type [12]
TG_SRCID	Short_Type [12]
	Float_Type [12]
	Float_Type[12]
CHANNEL	Short_Type [12,8192]
COUNTS	Short_Type [12,8192]
STAT_ERR	Float_Type [12,8192]
BACKGROUND_UP	Short_Type [12,8192]
BACKGROUND_DOWN	Short_Type [12,8192]
BIN_LO	Double_Type $[12,8192]$
BIN_HI	Double_Type [12,8192]
```chips> bin_lo_heg_p1 = pha2.BIN_LO[3,*] chips> counts_heg_p1 = pha2.COUNTS[3,*] chips> curve(bin_lo_heg_p1,counts_heg_p1) O chips> symbol none chips> step chips> xlabel "Wavelength (\AA)" chips> ylabel Counts chips> title "ACIS+HEG order=+1"```	

Note that $S-L a n g$ follows $C$ conventions by numbering array indexes from 0 , rather than 1 . Therefore the 4 th row (HEG, +1 order) in the PHA2 file is the 3rd row within the pha2 data arrays (hence the syntax
"bin_lo_heg_p1 = pha2.BIN_LO[3,*]" and "counts_heg_p1 = pha2.COUNTS[3,*])".

## With Sherpa

Sherpa can also be used to plot a PHA2 spectrum. In this case, the spectra do not need to be split first; Sherpa reads all the rows and allows you to specify individual ones for plotting or fitting purposes:

```
unix% sherpa
Welcome to Sherpa: CXC's Modeling and Fitting Program
Version: CIAO 3.4
Type AHELP SHERPA for overview.
Type EXIT, QUIT, or BYE to leave the program.
Notes:
 Temporary files for visualization will be written to the directory:
 /tmp
 To change this so that these files are not deleted when you exit Sherpa,
 edit $ASCDS_WORK_PATH in your 'ciao' setup script.
 Abundances set to Anders & Grevesse
sherpa> data acisf00459N002_pha2.fits
The inferred file type is PHA Type II. If this is not what you want, please
specify the type explicitly in the data command.
Warning: could not find SYS_ERR column
WARNING: statistical errors specified in the PHA file.
 These are currently IGNORED. To use them, type:
 READ ERRORS "<filename>[cols CHANNEL,STAT_ERR]" fitsbin
WARNING: backgrounds UP and DOWN are being read from this file,
 and are being combined into a single background dataset.
WARNING: multiple datasets have been input.
 The next available dataset number is 13.
sherpa> sherpa.dataplot.curvestyle="histo"
sherpa> sherpa.dataplot.symbolstyle="none"
```

```
sherpa> analvsis channel
sherpa> lp 2 data 3 data 4
```

Figure 8 -6] shows the plot of the HEG -1 order (row 3, upper drawing area) and +1 order (row 4 , lower drawing area) that is created. To change the axes to ChANNEL vs. COUNTS:

```
sherpa> ploty 3 counts
sherpa> ploty 4 counts
sherpa> lp 2 data 3 data 4
```

These commands alter the plots to look like Figure 9. ChIPS commands (within Sherpa) can be used at this point to customize the plot.

```
sherpa> exit
```

Goodbye.

## Displaying the Extraction Regions

Each pha2 file has a second block, named REGION, which stores the regions used by tgextract to extract the source and background spectra. There are three regions associated with each order: source, upper background, and lower background. For an ACIS/HETG observation, this gives 36 regions: 12 spectral components ( $+/-3,+/-2$, and $+/-1$ for HEG and MEG) times 3 regions apiece (source and two backgrounds).

To look at the columns of a REGION block:

unix\% dmlist "acisf00459N002_pha2.fits[REGION]" cols						
Columns for Table Block REGION						
Colno	Name	Unit	Type	Range		
1	SPEC_NUM		Int2	1:32767		Spectrum number
2	ROWID		String			Source or a backgrol
3	SHAPE		String			Shape of region
4	TG_LAM	angstrom	Real4	0 :	400.0	Dispersion coordinat
5	TG_D	degrees	Real4	-2.0:	2.0	Cross-dispersion cor
6	R [2]	(angstrom	degrees)	Real4 (2)	-Inf:+Inf	Raduis vector for Sl
7	ROTANG	degrees	Real4	-360.0:	360.0	Rotation angle for
8	TG_PART		Int2	0:9		Grating part index
9	TG_SRCID		Int2	1:32767		Source identificati
10	TG_M		Int2	-62:62		Diffraction order
11	COMPONENT		Int2	-		Component number

ds9 cannot display these regions as they are written in the pha2 file. In order to view them, we need to rename the (TG_LAM, TG_D) columns to ( $\mathrm{X}, \mathrm{Y}$ ) so that ds 9 knows how to interpret them. We will also need to create images in (TG_LAM, TG_D) coordinates, on which we can display the regions.

The following dmcopy commands create image and region files for the 1st and 3rd orders of the MEG arm:

```
unix% dmcopy \
 "acisf00459N002_evt2.fits[bin tg_lam=0:30:0.08,tg_d=-0.01:0.01:0.00008][tg_m=-1,1,tg_part=?
 459_order1.fits
unix% dmcopy \
 "acisf00459N002_evt2.fits[bin tg_lam=0:15:0.08,tg_d=-0.01:0.01:0.00008][tg_m=-3,3,tg_part=
 459_order3.fits
unix% dmcopy \
```

```
"acisf00459N002_pha2.fits[region][tg_m=1,tg_part=2][cols x=tg_lam,y=tg_d,*]" \}
region_order1.fits
unix\% dmcopy \}
"acisf00459N002_pha2.fits[region][tg_m=3,tg_part=2][cols x=tg_lam,y=tg_d,*]" \}
region_order3.fits
```

In creating the images, the filter includes + and - orders to obtain more events in the image. Since the regions are the same for $+/$ - orders, it is only necessary to copy one (the + orders were used here). The image limits are typical for ACIS/HETG observations, but will need to be adjusted for other configurations.

To display the event files with the regions ovelaid:
unix\% ds9 -tile 459_order1.fits -region region_order1.fits -cmap al 459_order3.fits -region region_order3.fits -cmap a
which produces Figure 10 Fond . We can see that all events are contained within at least one extraction region.

## History

01 Jun 2004 reviewed for CIAO 3.2: no changes
06 Dec 2005 updated for CIAO 3.3: version numbers
01 Dec 2006 updated for CIAO 3.4: ChIPS and Sherpa versions

## Image 1: Prism view of ACIS-S HETG dataset



## Image 2: Prism view of ACIS-S LETG dataset

$\square$					prism-1 : acisf01198N002_pha2.fits					
File	Iit Navigate Visualization			Analysis						
$\begin{aligned} & \text { IMAGE } \\ & \hline \text { TABLE } \\ & \hline \text { TABLE } \end{aligned}$	PRIMARY SPECTRUM REGION	$\mathrm{LL}$   3 cols,   ols, 18		COMMENT This FITS file nay contain long string keyuord values that are   COMHENT continued over nultiple keyuords, The HERSARC convention uses   comaracter at the end of each substring uhich is then continued   COMFNT char the next keyuord which has the nane CONTINUE,						
Units	SPEC_NTM	TG_M		TG_PART	TG_SRCII	X	Y	CIPANNEL	counts	
						pixel	pixel		count	C
Types	short	short	short		short	float	float	short	short	f
1	1	-3	3		1	4162.24	4084.68	short[8192]	short[8192]	fil
2	2	-2	3		1	4162.24	4084.68	short[8192]	short[8192]	fil
3	3	-1	3		1	4162.24	4084.68	short[8192]	short[8192]	f
4	4	1	3		1	4162.24	4084.68	short[8192]	short[8192]	fl
5	5	2	3		1	4162.24	4084.68	short[8192]	short[8192]	fil
6	6	3	3		1	4162.24	4084.68	short[8192]	short[8192]	fil

View Mode: ReadNrite
Processing : 1 of 6
Fri 14-Sep 15:03:06 Loading file acisf01198N002 pha2.fits

Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4

## Image 3: Expanded view of BIN_LO column

-	Expanded double array column : BIN_LO							
	Element 1	Element 2	Element 3	Element 4	Element 5	Element 6	Element 7	
1	6.992867	6.992034	6.991200	6.990367	6.989533	6.988700	6.9878	
2	10.489300	10.488050	10.486800	10.485550	10.484300	10.483050	10.481	800
3	20.978601	20.976101	20.973601	20.971101	20.968600	20.966100	20.96	600
4	20.978601	20.976101	20.973601	20.971101	20.968600	20.966100	20.96	600
5	10.489300	10.488050	10.486800	10.485550	10.484300	10.483050	10.481	800
6	6.992867	6.992034	6.991200	6.990367	6.989533	6.988700	6.987	
7	13.985000	13.983333	13.981667	13.980000	13.978333	13.976667	13.97	000
8	20.977500	20.975000	20.972500	20.970000	20.967500	20.965000	20.962	500
9	41.955000	41.950000	41.945000	41.940000	41.935000	41.930000	41.925	000
10	41.955000	41.950000	41.945000	41.940000	41.935000	41.930000	41.925	000
11	20.977500	20.975000	20.972500	20.970000	20.967500	20.965000	20.962	500
12	13.985000	13.983333	13.981667	13.980000	13.978333	13.976667	13.97	
-								
Processing : 11 of 12						Goto	F\%	
OK				Help				

## Image 4: Prism view of HRC-S LETG dataset



View Mode: ReadNWite
Processing : 1 of 2
Fri 14-Sep 15:04:40 Loading file hrcf00460N002_pha2.fits

Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4

## Image 5: Prism view of HRC-I LETG dataset



Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4

## Image 6: View of order +1 spectrum with Prism



Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4

## Image 7: View of order +1 spectrum with ChIPS



Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4
Image 8: View of order $+/-1$ spectrum with Sherpa: count rate


Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4
Image 9: View of order +/-1 spectrum with Sherpa: counts


Examining Grating Spectra and Regions: PHA2 files - CIAO 3.4

## Image 10: Data with source and background regions overlaid

The first order (left) and third (right) order images with extraction regions overlaid.


