
Using Data Cubes

CIAO 3.4 Science Threads

Using Data Cubes − CIAO 3.4

Using Data Cubes 1

Table of Contents
Get Started•
Creating a Position−time Data Cube from an Event File

How to display the file♦
•

Manipulating the Data Cube
Range filtering♦
Region filtering♦
Slicing a position−time data cube♦

•

Removing Extra Axes: a 4D image that's really a 2D image•
History•
Images

ds9 with data cube dialog box♦
Time−filtered data cube♦
Region filter overlaid on the data♦
Region−filtered data cube♦
A time plane from the data cube♦
VLA image♦

•

Using Data Cubes − CIAO 3.4

2 Table of Contents

URL: http://cxc.harvard.edu/ciao/threads/dm_cube/ Last modified: 1 Dec 2006

Using Data Cubes
CIAO 3.4 Science Threads

Overview

Last Update: 1 Dec 2006 − updated for CIAO 3.4: CIAO version

Synopsis:

The CIAO Data Model allows you to filter and manipulate 3−dimensional images, known as "data cubes." You
can select 3−dimensional subsets, or slice out 2−dimensional pieces. If two dimensions of the cube represent a
pair of position axes, you can apply a region filter to those axes.

Purpose:

To create and filter data cubes.

Proceed to the HTML or hardcopy (PDF: A4 | letter) version of the thread.

Get Started

Sample ObsID used: 1463 (ACIS−S, Jupiter)

File types needed: evt2

The thread also uses a VLA radio image from the NRAO Archive (project AZ0128, 00−Sep−14 03:08:20).

Creating a Position−time Data Cube from an Event File

While we choose to create an (x,y,time) data cube, users may bin on any three columns that make sense in the
analysis. For instance, you may want to create a PHA or energy axis to see how the spectral characteristics of a
source change over time.

A common analysis involving data cubes is to create a file with two position axes and one time axis. This example
shows how one might choose the binning parameters to create such a cube by inspecting various possibilities via
dmlist before writing out the file.

Using Data Cubes − CIAO 3.4

Using Data Cubes 3

http://cxc.harvard.edu/ciao/threads/dm_cube/
http://www.vla.nrao.edu/
http://archive.nrao.edu/archive/e2earchive.jsp

Here we are using an observation of jupiter, jupiter.fits. We need to determine a suitable time range and
step size, and select a spatial range for the filtering.

What if we were to simply bin all three axes by a factor of one? dmcopy can be used to examine the effects by
creating a virtual output file:

unix% dmlist "jupiter.fits[bin x,y,time]" cols
DMLIST (CIAO 3.4): WARNING: Creating large image: 1745 MB. Current max set at 50 MB.
Increase maximum using [opt mem=n] or increase blocking to reduce size.

−−
Columns for Image Block events_IMAGE
−−

ColNo Name Unit Type Range
 1 events_IMAGE[8192,8192,22381] Int2(8192x8192x22381) −

−−
Physical Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 sky(x) = (#1) [pixel]
 (y) (#2)
 2 3 time = +59969680.685274 [s] +1.0 * (#3 −0.50)

−−
World Coordinate Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 EQPOS(RA) = (+24.6832) +TAN[(−0.000136667)* (sky(x)−(+4096.50))]
 (DEC) (+8.6784) (+0.000136667) ((y) (+4096.50))

The result is an 8192 x 8192 x 22381 cube, which would about 3 terabytes in size.

The time axes is 22381 pixels because the default pixel size is one second and this is a 22 ks observation. We can
shorten this axis to only 22 steps in time by binning in units of 1000 seconds. Additionally, the spatial size can be
reduced by binning x and y by a factor of 8:

unix% dmlist "jupiter.fits[bin x=::8,y=::8,time=::1000]" cols

−−−
Columns for Image Block events_IMAGE
−−−

ColNo Name Unit Type Range
 1 events_IMAGE[1024,1024,23] Int2(1024x1024x23) −

−−−
Physical Axis Transforms for Image Block events_IMAGE
−−−

Group# Axis#
 1 1,2 sky(x) = (+0.50)[pixel] +(+8.0)* ((#1)−(+0.50))
 (y) (+0.50) (+8.0) ((#2) (+0.50))
 2 3 time = +59969680.685274 [s] +1000.0 * (#3 −0.50)

−−−

Using Data Cubes − CIAO 3.4

4 Using Data Cubes

World Coordinate Axis Transforms for Image Block events_IMAGE
−−−

Group# Axis#
 1 1,2 EQPOS(RA) = (+24.6832) +TAN[(−0.000136667)* (sky(x)−(+4096.50))]
 (DEC) (+8.6784) (+0.000136667) ((y) (+4096.50))

The output is now a 1024 x 1024 x 23 cube, which is more reasonable.

An alternate approach is to keep the full spatial resolution, but use a small region of the file:

unix% dmlist "jupiter.fits[bin x=3900:4400,y=4100:4600,time=::1000]" cols

−−
Columns for Image Block events_IMAGE
−−

ColNo Name Unit Type Range
 1 events_IMAGE[500,500,23] Int2(500x500x23) −

−−
Physical Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 sky(x) = (+3900.0)[pixel] +(+1.0)* ((#1)−(+0.50))
 (y) (+4100.0) (+1.0) ((#2) (+0.50))
 2 3 time = +59969680.685274 [s] +1000.0 * (#3 −0.50)

−−
World Coordinate Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 EQPOS(RA) = (+24.6832) +TAN[(−0.000136667)* (sky(x)−(+4096.50))]
 (DEC) (+8.6784) (+0.000136667) ((y) (+4096.50))

which shows that I will get a 500 x 500 x 23 image.

Finally, we decide to use this binning with dmcopy to create the file:

unix% dmcopy "jupiter.fits[bin x=3900:4400,y=4100:4600,time=::1000]" jupiter_cube.fits

unix% dmlist jupiter_cube.fits blocks

−−
Dataset: jupiter_cube.fits
−−

 Block Name Type Dimensions
−−
Block 1: events_IMAGE Image Int2(500x500x23)
Block 2: GTI7 Table 2 cols x 5 rows
Block 3: GTI0 Table 2 cols x 3 rows
Block 4: GTI1 Table 2 cols x 2 rows
Block 5: GTI2 Table 2 cols x 3 rows
Block 6: GTI3 Table 2 cols x 5 rows

As expected, the output is a 500 x 500 x 23 image.

Using Data Cubes − CIAO 3.4

Using Data Cubes 5

How to display the file

SAOImage ds9, the default imager distributed with CIAO, has the capability to display data cubes.

unix% ds9 jupiter_cube.fits &

When the file is opened, ds9 automatically detects that it is a cube and launches the data cube dialog box, as
shown in Figure 1 . (If the data cube dialog box doesn't launch, open it from the "Frame" menu.) The spatial
axes are displayed, while the third axis − time, in this case − is accessible via the dialog box. When "Play" is
chosen, ds9 cycles through the bins of the time axis, essentially creating a movie of the object. The speed of the
frame changes is controlled from the "Interval" menu of the dialog box.

The other buttons in the dialog box (e.g. "Prev" and "Next") allow the user to move back and forth manually as
well.

Manipulating the Data Cube

The data cube can be filtered using DM syntax in the same way as 2D files. All of these examples use the data
cube created in the previous section.

Range filtering

A filter is applied to the time column of the cube to select a range of 3500 s:

unix% dmcopy "jupiter_cube.fits[time=59969680:59973180]" range_cube.fits

unix% dmlist range_cube.fits cols

−−
Columns for Image Block events_IMAGE
−−

ColNo Name Unit Type Range
 1 events_IMAGE[500,500,4] Int2(500x500x4) −

−−
Physical Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 sky(x) = (+3900.0) +(+1.0)* ((#1)−(+0.50))
 (y) (+4100.0) (+1.0) ((#2) (+0.50))
 2 3 time = +59969680.685274 [s] +1000.0 * (#3 −0.50)

−−
World Coordinate Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 EQPOS(RA) = (+24.6832) +TAN[(−0.000136667)* (sky(x)−(+4096.50))]
 (DEC) (+8.6784) (+0.000136667) ((y) (+4096.50))

The output file is 500 x 500 x 4, since the filter spanned four of the 1000 s time bins. Displaying the file in
ds9 looks similar to the unfiltered file; there are just fewer steps available in the data cube dialog box.

Using Data Cubes − CIAO 3.4

6 How to display the file

http://hea-www.harvard.edu/RD/ds9/

Region filtering

One may decide to apply a region filter to restrict the spatial axes of the file further. The region file used here,
shown on the data in Figure 3 is:

unix% cat circle.reg
Region file format: CIAO version 1.0
circle(4143.5,4266.5,137.16489)

Note that if you are working with an object that moves in time, such as the solar system object we're using, make
sure the region is large enough that the object won't drift out of the field of view. Define the region, then use the
data cube dialog box to step forward and confirm that the object will still lie within the region.

dmcopy is used to apply the region filter to the unfiltered data cube:

unix% dmcopy "jupiter_cube.fits[sky=region(circle.reg)][opt null=−99]" region_cube.fits

Note that if you don't want to use a region file, the equivalent syntax for defining the region on the command line
is:

unix% dmcopy "jupiter_cube.fits[sky=circle(4143.5,4266.5,137.16489)][opt null=−99]" region_cube_2.fits

The resulting file has the same time axis as the unfiltered cube, but smaller spatial axes:

unix% dmlist region_cube.fits cols

−−
Columns for Image Block events_IMAGE
−−

ColNo Name Unit Type Range Null
 1 events_IMAGE[275,275,23] Int2(275x275x23) − −99

−−
Physical Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 sky(x) = (+4006.0) +(+1.0)* ((#1)−(+0.50))
 (y) (+4129.0) (+1.0) ((#2) (+0.50))
 2 3 time = +59969680.685274 [s] +1000.0 * (#3 −0.50)

−−
World Coordinate Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 EQPOS(RA) = (+24.6832) +TAN[(−0.000136667)* (sky(x)−(+4096.50))]
 (DEC) (+8.6784) (+0.000136667) ((y) (+4096.50))

It may be helpful to think of this file as a cylinder: a stack of (x,y) circles with a height of the time axis. Figure
4 shows the file in ds9.

Using Data Cubes − CIAO 3.4

Region filtering 7

Slicing a position−time data cube

It is also possible to slice time planes out of the file:

unix% dmcopy "jupiter_cube.fits[#3=10][bin x,y]" plane10.fits

This filters the cube by selecting pixels where the logical axis 3 ("#3") coordinate is equal to 10.

The output file in an (x,y) image representing that slice of time:

unix% dmlist plane10.fits cols

−−
Columns for Image Block events_IMAGE
−−

ColNo Name Unit Type Range
 1 events_IMAGE[500,500] Int2(500x500) −

−−
Physical Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 sky(x) = (+3900.0) +(+1.0)* ((#1)−(+0.50))
 (y) (+4100.0) (+1.0) ((#2) (+0.50))

−−
World Coordinate Axis Transforms for Image Block events_IMAGE
−−

Group# Axis#
 1 1,2 EQPOS(RA) = (+24.6832) +TAN[(−0.000136667)* (sky(x)−(+4096.50))]
 (DEC) (+8.6784) (+0.000136667) ((y) (+4096.50))

This is a two−dimensional image, shown in Figure 5 .

Removing Extra Axes: a 4D image that's really a 2D image

Some data, particularly radio images, have additional coordinate axes that are only one pixel wide, which are used
to convey extra metadata. While useful, these extra axes may confuse applications that are designed for
2−dimensional data. dmcopy can be used to strip away the extra axes (at the cost of losing those metadata).

For instance, data obtained with the VLA looks like:

unix% dmlist vla_radio.img cols

−−−
Columns for Image Block PRIMARY
−−−

ColNo Name Unit Type Range
 1 PRIMARY[256,256,1,1] JY/BEAM Real4(256x256x1x1) −Inf:+Inf

−−−

Using Data Cubes − CIAO 3.4

8 Slicing a position−time data cube

http://www.vla.nrao.edu/

Physical Axis Transforms for Image Block PRIMARY
−−−

Group# Axis#
 1 1,2 POS(X) = (#1)
 (Y) (#2)
 2 3 Z = #3
 3 4 AXIS4 = #4

−−
World Coordinate Axis Transforms for Image Block PRIMARY
−−

Group# Axis#
 1 1,2 EQPOS(RA) = (+265.6222) +SIN[(−0.000277778)* (POS(X)−(+128.0))]
 (DEC) (−28.9884) (+0.000277778) ((Y) (+129.0))
 2 3 FREQ = +4.33399E+10 +100000000.0 * (Z −1.0)
 3 4 STOKES = AXIS4

This is a 256 x 256 x 1 x 1 image whose physical axes are known to CIAO as X, Y, Z, AXIS4 and whose world
coordinate axes are called RA, DEC, FREQ and STOKES. If we want to make this into a simple RA, DEC image:

unix% dmcopy "vla_radio.img[bin x,y]" vla_ra_dec.img

The file vla_ra_dec.img contains only the axes which were included in the binning specification; the
additional information from the input file is discarded. Since we binned by a factor of one, the output image is
also 256 x 256.

unix% dmlist vla_ra_dec.img cols

−−
Columns for Image Block PRIMARY_IMAGE
−−

ColNo Name Unit Type Range
 1 PRIMARY_IMAGE[256,256] Real4(256x256) −Inf:+Inf

−−
Physical Axis Transforms for Image Block PRIMARY_IMAGE
−−

Group# Axis#
 1 1,2 POS(X) = (#1)
 (Y) (#2)

−−
World Coordinate Axis Transforms for Image Block PRIMARY_IMAGE
−−

Group# Axis#
 1 1,2 EQPOS(RA) = (+265.6222) +SIN[(−0.000277778)* (POS(X)−(+128.0))]
 (DEC) (−28.9884) (+0.000277778) ((Y) (+129.0))

Figure 6 shows the VLA image in ds9.

Using Data Cubes − CIAO 3.4

Slicing a position−time data cube 9

History

27 Jan 2006new for CIAO 3.3: original version

01 Dec 2006updated for CIAO 3.4: CIAO version

URL: http://cxc.harvard.edu/ciao/threads/dm_cube/ Last modified: 1 Dec 2006

Using Data Cubes − CIAO 3.4

10 History

http://cxc.harvard.edu/ciao/threads/dm_cube/

Image 1: ds9 with data cube dialog box

Using Data Cubes − CIAO 3.4

Image 1: ds9 with data cube dialog box 11

Image 2: Time−filtered data cube

Using Data Cubes − CIAO 3.4

12 Image 2: Time−filtered data cube

Image 3: Region filter overlaid on the data

Using Data Cubes − CIAO 3.4

Image 3: Region filter overlaid on the data 13

Image 4: Region−filtered data cube

Using Data Cubes − CIAO 3.4

14 Image 4: Region−filtered data cube

Image 5: A time plane from the data cube

Using Data Cubes − CIAO 3.4

Image 5: A time plane from the data cube 15

Image 6: VLA image

Using Data Cubes − CIAO 3.4

16 Image 6: VLA image

