
URL: http://cxc.harvard.edu/ciao3.4/readpha.html
Last modified: December 2006

AHELP for CIAO 3.4 readpha Context: varmm

Jump to: Description Examples CHANGES IN CIAO 3.1 CHANGES IN CIAO 3.0.2 CHANGES IN CIAO 3.0
Bugs See Also

Synopsis

S−Lang function to read a spectrum in PHA format (both type I and II)

Syntax

Struct_Type readpha(filename)

Error Return Value: NULL

Argument:
filename is a String_Type variable

Description

The readpha() function provides a high−level interface to reading in a spectrum stored using the PHA format −
both type I and type II − described in the OGIP standard. It can be called either directly or indirectly (i.e. when
using the readfile() function). The ahelp page for readfile describes the features of this routine that are common to
all the "read" functions provided by the Varmm module. This page describes those features that are unique to the
readpha() command.

The filename argument should be a string that contains the name of the file to be read in. Although it can include
Data Model filters it is best not to use them when reading in a PHA file, since any filter may well remove needed
information from the file. As an example of how the function is used:

 chips> spec = readpha("src.pha")

What does the function return?

The function returns a structure whose fields contain the data read in from the file. If an error occurred − such as
the file not being found, or it is not in PHA format − then NULL is returned instead. The returned structure
follows the format of the other "read" functions: metadata − i.e. information about the file − is stored in fields
beginning with an underscore character followed by fields containing the image data and
coordinate−transformation information. The initial fields are discussed in "ahelp readfile"; here we concentrate on
those fields specific to PHA files.

Ahelp: readpha − CIAO 3.4

readpha 1

http://cxc.harvard.edu/ciao3.4/readpha.html
http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary/ogip_92_007_summary.html

Fields for PHA−I files:

Field
name:

Description:

_exptime The exposure time of the observation in seconds.

_ncols Gives the number of columns.

_nrows
Gives the number of rows. If the file contains grouping information, then this will generally be
larger than the length of the channels and counts arrays.

channels
The channel number. If the file has been grouped, then these numbers will not be match the PHA or
PI channel value. The length of this array is given by the numgroups field.

counts
The number of counts in this bin. If the file has been grouped, then this array represents the grouped
data. The length of this array is given by the numgroups field.

grouping
This gives the grouping column of the PHA file. Its length matches the original number of rows in
the file (i.e. the _nrows and numchans fields). The values of this array are +1 for the start of a new
bin and −1 for a continuing bin.

qualityflags
Only present if the file contains a QUALITY column. This array gives the quality value of each bin.
Its length matches the counts array. Values of 0 indicate good data, non−zero values indicate bad
data.

phachans
This field is only present for grouped PHA files. It gives the channel number − in either PI or PHA
units − corresponding to the start of each bin. Its length matches the counts array.

areascal This is an array with 1 element which contains the area scaling. In general this value will be 1.0.

backscal This gives the value of the BACKSCAL keyword. It is stored in an array with 1 element.

errors
This array gives the contents of the STAT_ERR column in the PHA file. This field is only available
if the file does not contain the keyword POISSERR set to true.

backgroundThis one−element array gives the name of the background file associated with this file.

arf This one−element array gives the name of the ARF associated with this file.

response This one−element array gives the name of the RMF associated with this file.

numgroups
This one−element array gives the number of groups in the file. If no grouping information is in the
file, then the value will equal the _nrows field.

numchans
This one−element array gives the number of channels in the file, before any grouping was applied. If
no grouping information is present, then this will be set to 0.

For example, here is the structure returned when a PHA−I file − with no grouping data − is read in:

 chips> pha = readpha("source.pha")
 chips> print(pha)
 _filename = source.pha
 _path = /data/analysis/
 _filter = NULL
 _filetype = 7
 _header = String_Type[304]
 _exptime = 50703.3
 _ncols = 11
 _nrows = 1024
 channels = Float_Type[1024]
 counts = Float_Type[1024]
 grouping = Integer_Type[1024]
 areascal = 1
 backscal = 7.72066e−07
 errors = Float_Type[1024]
 background = none

Ahelp: readpha − CIAO 3.4

2 Fields for PHA−I files:

 arf = /data/analysis/source.arf
 response = /data/analysis/source.rmf
 numgroups = 1024
 numchans = 0

The format for type−II PHA files is similar; the main changes are extra information related to the gratings and the
fact that the structure now contains data for multiple spectra.

Fields for PHA−II files:

Field
name:

Description:

_exptime The exposure time of the observation in seconds.

_ncols Gives the number of columns.

_nrows This gives the number of spectra in the PHA−II file.

channels As for the PHA−I case, except that the array contains the data for all the spectra.

counts As for the PHA−I case, except that the array contains the data for all the spectra.

grouping

This gives the grouping data for the spectra. It is stored as a two−dimensional array [m,n], with the
first axis (m) being the spectrum number (so its length matches the _nrows field) and the second axis
is for the columns in each spectrum. The values of this array are +1 for the start of a new bin and −1
for a continuing bin.

binhi This gives the upper wavelength for each bin.

binlo This gives the lower wavelength for each bin.

backup This gives the background value from the BACKGROUND_UP column.

backdown This gives the background value from the BACKGROUND_DOWN column.

areascal As for the PHA−I case.

backscal As for the PHA−I case.

backscup The background scaling factor for the backup column. This is stored as a one−element array.

backscdn The background scaling factor for the backdown column. This is stored as a one−element array.

errors
As for the PHA−I case, except that the array contains the data for all the spectra. This field is only
available if the file does not contain the keyword POISSERR set to true.

backgroundThe names of the background files for each of the spectra. This is an array with a length of _nrows.

arf The names of the ARFs for each of the spectra. This is an array with a length of _nrows.

response The names of the RMFs for each of the spectra. This is an array with a length of _nrows.

numgroupsThe number of groups in each spectrum. This is an array with length of _nrows.

numchans
The number of groups in each spectrum. This is an array with length of _nrows. If no grouping
information is present, then each element will be set to 0.

order This array gives the value of the TG_M column from the input file.

tgpart This array gives the value of the TG_PART column from the input file.
For example, the following is a PHA−II file from a HETG observation.

 chips> pha2 = readpha("acisf00459N002_pha2.fits")
 chips> print(pha2)
 _filename = acisf00459N002_pha2.fits
 _path = /data/analysis/
 _filter = NULL
 _filetype = 8
 _header = String_Type[190]

Ahelp: readpha − CIAO 3.4

 Fields for PHA−II files: 3

 _exptime = 38564.6
 _ncols = 19
 _nrows = 12
 channels = Float_Type[98304]
 counts = Float_Type[98304]
 grouping = Integer_Type[12,8192]
 binhi = Float_Type[98304]
 binlo = Float_Type[98304]
 backup = Float_Type[98304]
 backdown = Float_Type[98304]
 areascal = 1
 backscal = 1
 backscup = 0.222222
 backscdn = 0.222222
 errors = Float_Type[98304]
 background = String_Type[12]
 arf = String_Type[12]
 response = String_Type[12]
 numgroups = Integer_Type[12]
 numchans = Integer_Type[12]
 order = Integer_Type[12]
 tgpart = Integer_Type[12]

Example 1

Reading in a PHA−I file using readpha()

 chips> pha = readpha("src.pi.grp")
 chips> print(pha)
 _filename = src.pi.grp
 _path = /data/analysis/
 _filter = NULL
 _filetype = 7
 _header = String_Type[352]
 _exptime = 50703.3
 _ncols = 12
 _nrows = 1024
 channels = Float_Type[127]
 counts = Float_Type[127]
 grouping = Integer_Type[1024]
 qualityflags = Integer_Type[127]
 phachans = Integer_Type[127]
 areascal = 1
 backscal = 0.000664699
 background = /data/analysis/bgnd.pi
 arf = /data/analysis/src.arf
 response = /data/analysis/src.rmf
 numgroups = 127
 numchans = 1024

Here we read in a PHA−I file that had been grouped − i.e. it was the output of dmgroup − which is why the length
of the counts array (127) does not match the number of rows in the file (1024).

Example 2

Ahelp: readpha − CIAO 3.4

4 Example 1

Reading in a PHA−I file using readfile()

Since readfile() calls readpha() when given a PHA file, the following command produces the same structure as the
previous example.

 chips> pha = readfile("src.pi.grp")

Example 3

Reading in a PHA−II file using readarf()

Here we use readpha() to read in a PHA−II file from a LETG observation using the HRC−I.

 chips> pha2 = readpha("hrcf01801N003_pha2.fits")
 Warning: could not find SYS_ERR column
 chips> print(pha2)
 _filename = hrcf01801N003_pha2.fits
 _path = /data/analysis/
 _filter = NULL
 _filetype = 8
 _header = String_Type[190]
 _exptime = 13726.5
 _ncols = 19
 _nrows = 2
 channels = Float_Type[32768]
 counts = Float_Type[32768]
 grouping = Integer_Type[2,16384]
 binhi = Float_Type[32768]
 binlo = Float_Type[32768]
 backup = Float_Type[32768]
 backdown = Float_Type[32768]
 areascal = 1
 backscal = 1
 backscup = 4.5
 backscdn = 4.5
 errors = Float_Type[32768]
 background = String_Type[2]
 arf = String_Type[2]
 response = String_Type[2]
 numgroups = Integer_Type[2]
 numchans = Integer_Type[2]
 order = Integer_Type[2]
 tgpart = Integer_Type[2]

CHANGES IN CIAO 3.1

Reading a file in a directory containing the string '::'

The routines no longer crash when reading a file within a directory whose name contains the string "::".

Enhanced documentation

The readpha function is now documented separately from readfile.

Ahelp: readpha − CIAO 3.4

Reading in a PHA−I file using readfile() 5

CHANGES IN CIAO 3.0.2

Stack Underflow errors

It is now possible to use readfile() − or any of the other read functions described here − in an if statement. Prior to
CIAO 3.0.2 you could not write something like

 if (NULL == readfile("evt2.fits")) error("Failed to read file.");

since it would result in a "Stack Underflow" error message. This means that many routines that use readfile() −
such as Sherpa's load_dataset() and related functions − can also now be used in an if statement such as:

 if (1 != load_image(imgname))
 verror("Unable to load %s as an image.", imgname);

CHANGES IN CIAO 3.0

New field "_filetype"

A new field called "_filetype" has been added to the data structure which describes the type of the file read in. The
contents of the field are described in the "Format of data structure" section in "ahelp readfile".

Bugs

See the bugs page for the Varmm library on the CIAO website for an up−to−date listing of known bugs.

See Also

modules
varmm

varmm
fits_bitpix, readarf, readascii, readbintab, readfile, readimage, readrdb, readrmf, writeascii, writefits

The Chandra X−Ray Center (CXC) is operated for NASA by the Smithsonian
Astrophysical Observatory.
60 Garden Street, Cambridge, MA 02138 USA.
Smithsonian Institution, Copyright © 1998−2006. All rights reserved.

URL:
http://cxc.harvard.edu/ciao3.4/readpha.html

Last modified: December 2006

Ahelp: readpha − CIAO 3.4

6 CHANGES IN CIAO 3.0.2

http://cxc.harvard.edu/ciao/bugs/varmm.html
http://cxc.harvard.edu/ciao3.4/readpha.html

