
URL: http://cxc.harvard.edu/ciao3.4/readbintab.html
Last modified: December 2006

AHELP for CIAO 3.4 readbintab Context: varmm

Jump to: Description Examples CHANGES IN CIAO 3.1 CHANGES IN CIAO 3.0.2 CHANGES IN CIAO
3.0 Bugs See Also

Synopsis

S−Lang function to read a FITS binary table.

Syntax

Struct_Type readbintab(filename)
Struct_Type readbintab(filename, cols)
Struct_Type readbintab(filename, cols, nskip)

Error Return Value: NULL

Arguments:
filename is a String_Type variable
cols is either a String_Type variable or an Int_Type array
nskip is an Int_Type variable

Description

The readbintab() function provides a high−level interface to reading in a FITS binary table. It can be called
either directly or indirectly (i.e. when using the readfile() function). The ahelp page for readfile describes the
features of this routine that are common to all the "read" functions provided by the Varmm module. This page
describes those features that are unique to the readbintab() command.

The filename argument should be a string that contains the name of the file to be read in. It can include Data
Model filters (e.g. "ahelp dmsyntax"), so it can be used to filter tables or select a subset of the columns "on the
fly". The optional parameter "cols" is a list of column names or numbers to be read, and "nskip" is the number
of rows to be skipped. These two parameters are ignored if a DM filter is supplied as part of the first
argument. As examples:

 chips> e1 = readbintab("evt2.fits")
 chips> e2 = readbintab("evt2.fits[cols time,sky,pi]")
 chips> e3 = readbintab("evt2.fits[sky=region(src.reg)][cols time,pi]")
 chips> e4 = readbintab("evt2.fits", "1,2", 10)

where the last line reads in only the first two columns of the file and skips the first ten lines.

Reading in PHA, ARF, and RMF files

The readpha(), readarf(), and readrmf() functions will also read in FITS binary tables, but only if they are

Ahelp: readbintab − CIAO 3.4

readbintab 1

http://cxc.harvard.edu/ciao3.4/readbintab.html

PHA, ARF, and RMF files respectively. As discussed in their respective ahelp pages, these functions provide
easy access to relevant parts of the file. However, if you want to access the data as it is stored on disk, use the
readbintab() function to read them in.

What does the function return?

The function returns a structure whose fields contain the data read in from the file. If an error occurred − such
as the file not being found, or it not containing a table − then NULL is returned instead. The returned structure
follows the format of the other "read" functions: metadata − i.e. information about the file − is stored in fields
beginning with an underscore character followed by fields containing the image data and
coordinate−transformation information. The initial fields are discussed in "ahelp readfile"; here we
concentrate on those fields specific to tables.

Fields specific to tables:

Field
name:

Description:

_ncols Gives the number of columns read from the table.

_nrows Gives the number of rows read from the table.

<column1>
Each column in the table is available by its name. The case of the field name matches that stored
in the FITS file unless the varmm.caseinsen variable − a field in the Varmm state obect − is set
to 1, in which case the field names are converted to lower case.

For example, if evt2.fits is a level−two ACIS event file, then we would see something like:

 chips> evt = readbintab("evt.fits[cols time,ccd_id,sky,pi]")
 chips> print(evt)
 _filename = evt2.fits
 _path = /data/analysis/
 _filter = [cols time,ccd_id,sky,pi]
 _filetype = 4
 _header = String_Type[671]
 _ncols = 5
 _nrows = 20
 time = Double_Type[20]
 ccd_id = Short_Type[20]
 x = Float_Type[20]
 y = Float_Type[20]
 pi = Integer_Type[20]

where the Data Model filter ("[cols time,ccd_id,sky,pi]") has been used just to read in the specified columns.
In this particular case the event file only contained 20 events (i.e. rows). Note that vector colums such as the
"SKY" column are read in as separate columns − here "x" and "y".

Example 1

Reading in a FITS table

 chips> e = readbintab("evt2.fits")
 chips> print(e)
 _filename = evt2.fits
 _path = /data/analysis/
 _filter = NULL
 _filetype = 4
 _header = String_Type[696]
 _ncols = 18
 _nrows = 39092

Ahelp: readbintab − CIAO 3.4

2 What does the function return?

 time = Double_Type[39092]
 ccd_id = Short_Type[39092]
 node_id = Short_Type[39092]
 expno = Integer_Type[39092]
 chipx = Short_Type[39092]
 chipy = Short_Type[39092]
 tdetx = Short_Type[39092]
 tdety = Short_Type[39092]
 detx = Float_Type[39092]
 dety = Float_Type[39092]
 x = Float_Type[39092]
 y = Float_Type[39092]
 pha = Integer_Type[39092]
 energy = Float_Type[39092]
 pi = Integer_Type[39092]
 fltgrade = Short_Type[39092]
 grade = Short_Type[39092]
 status = UChar_Type[39092,4]

Note that the function reads in vector columns, such as SKY(x,y) and CHIP(chipx,chipy) as individual
columns. The status column has been read in as 4 UChar_Type variables per row, since it contains 32 bits.
The order of the array is that the first element of the row − i.e. status[*,0] is the most−significant set of 8 bits
while status[*,3] contains the least−significant bits of the status column.

If we had used readfile(), we would have gotten the same structure as shown here.

Example 2

Reading in a FITS table using a DM filter

 chips> e = readbintab("evt2.fits[#row=11:][cols time,sky,energy]")
 chips> print(e)
 _filename = evt2.fits
 _path = /data/analysis/
 _filter = NULL
 _filetype = 4
 _header = String_Type[696]
 _ncols = 4
 _nrows = 39082
 time = Double_Type[39082]
 x = Float_Type[39082]
 y = Float_Type[39082]
 energy = Float_Type[39082

Example 3

Reading in a FITS table using column numbers

 chips> e = readbintab("evt2.fits", [1,8,10], 10)
 chips> print(e)
 _filename = evt2.fits
 _path = /data/analysis/
 _filter = NULL
 _filetype = 4
 _header = String_Type[696]
 _ncols = 4
 _nrows = 39082
 time = Double_Type[39082]
 x = Float_Type[39082]
 y = Float_Type[39082]
 energy = Float_Type[39082]

Ahelp: readbintab − CIAO 3.4

Example 2 3

Here we used the optional "cols" and "nskip" to mimic the DM filter used in the previous example. Note that
the columns could have been specified as

"1,8,10"

instead of as an array, and that the column numbers use the DM numbering scheme; i.e. as reported by

dmlist evt2.fits cols

In general, the DM syntax − as discussed in "ahelp dmsyntax" − is preferred since it is more powerful and
flexible than using the "cols" and "nskip" parameters.

Example 4

Here we use readbintab() to read in just the COUNTS column of a PHA file.

 chips> pha = readbintab("spec.pha[cols counts]")
 chips> print(pha)
 _filename = spec.pha
 _path = /data/analysis/
 _filter = [cols channel,counts]
 _filetype = 4
 _header = String_Type[352]
 _ncols = 1
 _nrows = 1024
 COUNTS = Integer_Type[1024]

If we had used the readfile() command in this case, it would have called readpha() instead of readbintab().
This would have caused an error, since the DM filter removes columns that readpha() requires, e.g. the
CHANNEL column.

Example 5

Here we write a S−Lang script that can be run by slsh. It reads in the time, sky, and energy columns from
evt2.fits and then does some simple arithmetic (calculating the average energy).

 require("varmm");
 varmm.caseinsen = 0;
 variable dat = readbintab("evt2.fits[cols time,sky,energy]");
 if (dat == NULL)
 error("Error: Unable to read from evt2.fits");

 vmessage("The event file contains %d rows", dat._nrows);
 vmessage("The average energy is %f", sum(dat.energy) / dat._nrows);

CHANGES IN CIAO 3.1

Speed enhancements

The time taken to read in a tables which does not contain any array columns (i.e. more than one element per
row of the column) has been reduced.

Reading a file in a directory containing the string '::'

The routines no longer crash when reading a file within a directory whose name contains the string "::".

Ahelp: readbintab − CIAO 3.4

4 Example 4

Enhanced documentation

The readbintab function is now documented separately from readfile.

CHANGES IN CIAO 3.0.2

Stack Underflow errors

It is now possible to use readfile() − or any of the other read functions described here − in an if statement.
Prior to CIAO 3.0.2 you could not write something like

 if (NULL == readbintab("evt2.fits")) error("Failed to read file.");

since it would result in a "Stack Underflow" error message. This means that many routines that use readfile()
− such as Sherpa's load_dataset() and related functions − can also now be used in an if statement such as:

 if (1 != load_dataset(fname))
 verror("Unable to load %s.", fname);

CHANGES IN CIAO 3.0

New field "_filetype"

A new field called "_filetype" has been added to the data structure which describes the type of the file read in.
The contents of the field are described in the "Format of data structure" section in "ahelp readbintab".

Bugs

Unable to read in data from virtual vector columns

The readbintab() function does not read in virtual vector columns correctly, although it will read in one of the
components of such a column. So

 variable f1 = readbintab("evt2.fits[cols eqpos]");
 variable f2 = readbintab("evt2.fits[cols ra,dec]");

will produce ra and dec columns − e.g. f1.ra, f1.dec, f2.ra, and f2.dec − that are incorrect, whereas

 variable f3 = readbintab("evt2.fits[cols ra]");
 variable f4 = readbintab("evt2.fits[cols dec]");

produces columns f3.ra and f4.dec that are correct. This only affects columns such as EQPOS that are not
stored directly in a file but are created "on the fly" by applying a transform to a column that does exist (for
Chandra event files, the EQPOS file is created from the SKY column). If the EQPOS column is a "real"
column − e.g. as in the output of the wavdetect tool − then readbintab() works correctly.

See the bugs page for the Varmm library on the CIAO website for an up−to−date listing of known bugs.

See Also

modules
varmm

varmm
fits_bitpix, readarf, readascii, readfile, readimage, readpha, readrdb, readrmf, writeascii, writefits

Ahelp: readbintab − CIAO 3.4

Enhanced documentation 5

http://cxc.harvard.edu/ciao/bugs/varmm.html

The Chandra X−Ray Center (CXC) is operated for NASA by the Smithsonian
Astrophysical Observatory.
60 Garden Street, Cambridge, MA 02138 USA.
Smithsonian Institution, Copyright © 1998−2006. All rights reserved.

URL:
http://cxc.harvard.edu/ciao3.4/readbintab.html

Last modified: December 2006

Ahelp: readbintab − CIAO 3.4

6 Enhanced documentation

http://cxc.harvard.edu/ciao3.4/readbintab.html

