
URL: http://cxc.harvard.edu/ciao3.4/printarr.html
Last modified: December 2006

AHELP for CIAO 3.4 print Context: varmm

Jump to: Description Examples CHANGES IN CIAO 3.1 CHANGES IN CIAO 3.0 Bugs See Also

Synopsis

S−Lang functions to print variables, arrays and structures

Syntax

print(variable)
printarr(array)
printarr(array, n)

Description

The print() and printarr() functions are used to print the contents of the supplied variable to the standard output.
The writeascii() function can also be used to display arrays.

The print() function

The output from print() depends on the type of the supplied variable:

If the variable is a scalar, the value is printed out.•
If the variable is an array or an associative array then the array is printed out as if printarr() had been
called.

•

If the variable is a structure, each field of the structure is printed out with its value.•

The printarr() function

The printarr() function is used to print out the contents of arrays and associative arrays. The optional second
argument (n in the synopsis above) is ignored if sent an associative array. If sent an array and the second
argument is either not supplied or set to 0 then the whole array is printed to standard output. If n is greater than 0
then the first n elements of the array are printed, and if n is less than 0 then the datatype of the array, together with
its dimensions, are output. See the examples below for other ways of selecting a range of elements to print.

Ahelp: print − CIAO 3.4

print 1

http://cxc.harvard.edu/ciao3.4/printarr.html

Note that print() and printarr() are limited to displaying the output of one and two dimensional arrays. The array
type and dimensions will be displayed, along with a warning message, if given an array with more than two
dimensions:

 chips> y = _reshape([1:24],[3,2,4])
 chips> print(y)
 Integer_Type[3,2,4]
 printarr() currently limited to 1D/2D arrays

You can use the S−Lang array−indexing capailities to select a one− or two−dimensional subset of the array:

 chips> print(y[0,*,*])
 1 2 3 4
 5 6 7 8
 chips> print(y[2,*,*])
 17 18 19 20
 21 22 23 24
 chips> print(y[*,1,2])
 7
 15
 23

Example 1

Displaying scalar variables

Here we use print() to display the contents of various scalar values.

 chips> a = "How to print a string"
 chips> print(a)
 How to print a string
 chips> b = 23
 chips> print(b)
 23
 chips> print(a + " and a number (" + string(b) + ")")
 How to print a string and a number (23)

In the last call to print(), we used the string concatanation operator (+) to combine strings, and converted a
number to a string. For complicated formats it is probably easier to use the S−Lang intrinsic functions such as
vmessage() and printf().

Example 2

Displaying arrays

If you supply print() with an array, it will output the contents of the array (as does printarr).

 chips> x = [1:3]
 chips> y = x + 0.5
 chips> print(x)
 1
 2
 3
 chips> print(y)
 1.5

Ahelp: print − CIAO 3.4

2 Example 1

 2.5
 3.5
 chips> printarr(y,−1)
 Double_Type[3]

Example 3

Changing the format used to write out arrays

The format used to print out numbers can be changed by using the set_float_format() routine from the S−Lang
Run−Time Library. In the example below we use this function to change the output from "%g" (the default) to
"%13.6e", which means to use exponential notation with 6 numbers after the decimal point and placed within a
space 13 characters wide.

 chips> x = 10^([0:10:2] / 3.0)
 chips> print(x)
 1
 4.64159
 21.5443
 100
 464.159
 2154.43
 chips> set_float_format("%13.6e")
 chips> print(x)
 1.000000e+00
 4.641589e+00
 2.154435e+01
 1.000000e+02
 4.641589e+02
 2.154435e+03
 chips> set_float_format("%g")

Note that we reset the format to the default value ("%g") to avoid changing the layout of other commands, such as
printarr() and writeascii().

Example 4

Displaying structures

If you have a structure − such as returned by the varmm readfile() function and its variants − then print() can be
used to view its contents:

 chips> arf = readfile("spec.arf")
 The inferred file type is ARF.
 chips> print(pha)
 _filename = spec.arf
 _path = /data/ciao
 _filter = NULL
 _filetype = 9
 _header = String_Type[162]
 _ncols = 3
 _nrows = 1090
 ENERG_LO = Float_Type[1090]
 ENERG_HI = Float_Type[1090]
 SPECRESP = Float_Type[1090]

as well as individual fields of the structure.

Ahelp: print − CIAO 3.4

Example 3 3

 chips> print(arf.SPECRESP)
 0.0232154
 0.0509929
 0.121241
 ...

Example 5

Displaying associative arrays

The print() and printarr() commands can also be used to display the contents of associative arrays:

 chips> xx = Assoc_Type [String_Type]
 chips> xx["foo"] = "a string"
 chips> xx["bar"] = "another string"
 chips> xx["1 3"] = time()
 chips> print(xx)
 Assoc_Type[1 3] = Wed May 21 10:16:42 2003
 Assoc_Type[bar] = another string
 Assoc_Type[foo] = a string

Note that the order of the keys of the associative array need not match the order that they were defined, as shown
above.

Example 6

Limiting the number of elements displayed

When using printarr() to display an array there are several methods you can use to restrict the number of elements
displayed.

The optional second parameter of printarr(), if set to a value greater than 0, limits the display to that many
elements:

 chips> y = [1:10] + 0.5
 chips> printarr(y,3)
 1.5
 2.5
 3.5

The S−Lang array manipulation capabilities provide much more flexibility, such as picking any range of the
array, rather than always starting at the first element

 chips> printarr(y[[2:3]])
 3.5
 4.5

(remeber that S−Lang starts counting from 0 for its array elements, so index 2 is the third element in the array).

CHANGES IN CIAO 3.1

OS−X

In CIAO 3.0, the print() and printarr() functions would fail on OS−X if given an array with more than 20 elements
and the PAGER environment variable was not set.

Ahelp: print − CIAO 3.4

4 Example 5

CHANGES IN CIAO 3.0

print() now behaves like printarr() when given an array

Prior to CIAO 3.0, if print() was called with an array then the array type and dimensionality would have been
displayed, as shown in the following example.

 chips> print([1:3])
 Integer_Type[3]

As of CIAO 3.0, print() now calls printarr() to display the contents, so the result is now:

 chips> print([1:3])
 1
 2
 3

If you want to find out the array type and dimensions then you can:

call printarr() with the optional second parameter set to −1•
use the "stack clearing" behaviour of ChIPS and S−Lang and just give the array at the prompt•
call the array_info() and _typeof() S−Lang intrinsic functions•

An example of the first two methods is shown below:

 chips> a = [1:3]
 chips> b = sin([1:3])
 chips> printarr(a,−1)
 Integer_Type[3]
 chips> a
 Integer_Type[3]
 chips> b
 Double_Type[3]

Associative arrays are now displayed

If given an associative array then print() and printarr() now display the contents of the array, as shown in the
examples section.

Bugs

See the bugs page for the Varmm library on the CIAO website for an up−to−date listing of known bugs.

See Also

modules
varmm

varmm
apropos, clearstack, dup_struct, is_struct_defined, reverse

Ahelp: print − CIAO 3.4

CHANGES IN CIAO 3.0 5

http://cxc.harvard.edu/ciao/bugs/varmm.html

The Chandra X−Ray Center (CXC) is operated for NASA by the Smithsonian
Astrophysical Observatory.
60 Garden Street, Cambridge, MA 02138 USA.
Smithsonian Institution, Copyright © 1998−2006. All rights reserved.

URL:
http://cxc.harvard.edu/ciao3.4/printarr.html

Last modified: December 2006

Ahelp: print − CIAO 3.4

6 CHANGES IN CIAO 3.0

http://cxc.harvard.edu/ciao3.4/printarr.html

