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1 Why Use Gratings? For High Resolution!
The “Resolving Power” of a spectrometer is defined as

R =
λ

∆λ
=

E

∆E
(1)

in which ∆x is the Full-Width, Half-Maximum (FWHM). “High” is a relative term. In X-rays, R ∼ 1000 is considered high, and that is
what the HETGS and LETGS can deliver. The Chandra gratings are transmission gratings, whose diffraction is described by the simple
grating equation:

mλ = P sin(θ). (2)

The diffraction angle is small, and defined by θ = r/XRowland, where r is the linear distance along the spectrum. For the Chandra
spectrometers we have periods P of 2000 Å (HEG), 4000 Å (MEG), or 9900 Å (LEG), a Rowland diameter (focal length), XRowland, of
about 8635 mm, and sensitivity to wavelengths from 1.5 to 15 Å for HEG, to 30 Å for MEG, and to about 180 Å for LEG in first order, m.

Note that m may be a positive or negative integer, or 0, and that for different values of m having the same sign, different wavelengths
will appear at the same angle (and hence, same detector location) — these are “overlapping” orders.

Some pictures more clearly demonstrates what we obtain from high resolution:

Figure 3: The low resolution (ASCA) spectrum of TW Hya (left), and the Chandra/HETGS spectrum (right). More counts
cannot always compete with spectral resolution! (Adapted from Kastner et al. 2002, ApJ,567,434)

CXC 4
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Figure 4: A portion of the HETGS flux-corrected
spectrum of ε Ori. Note the broadened lines.

Figure 5: The LETGS counts spectrum of Procyon.
Note the large wavelength coverage.
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Figure 6: The HETGS counts spectrum of Cyg X-1, a
strong continuum source with absorption lines.

Figure 7: A portion of the flux-corrected HETGS
spectrum of Cyg X-1
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Wavelength or Energy?

It’s your choice. Memorize this: hc = 12.3984 [Å keV], soE[keV] ∼ 12
λ[Å]

.

Figure 8: Vela X-1 HETGS spectrum, in wavelength (left) and energy (right) units.

Dispersive (grating) spectrometers are ∼linear in wavelength.

Non-dispersive spectrometers (CCDs) are ∼linear in energy.
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2 A Few Resources

Figure 9: (2003) Ann.Rev.A&A, 41,291.

Figure 10:
http://space.mit.edu/home/nss/cat_
science.html provides several links to papers
presenting scientific cases requiring high-resolution
spectroscopy. IXO is your future! (hopefully).

Figure 11:
TGCat: http://tgcat.mit.edu — Processed Chan-
dra HETG & LETG spectra, responses, light curves,
summary plots, tables, interactive plotting — “shovel-
ready”.
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Figure 12: TGCat source, extraction, and preview table examples, following a “Quick Search” on “car”.
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3 Fundamentals of the Gratings

Figure 13:
A Chandra diagram, showing the location of the two grating assemblies. Here they are both retracted. Either one can be
inserted to disperse the light into the X-ray spectrum.

We have two grating assemblies on Chandra:

LETG Low Energy Transmission Grating, sensitive over about 2-180 Å (0.07 - 6 keV)

HETG High Energy Transmission Grating, sensitive over 1.5-30 Å (0.4 - 8 keV); The HETG itself has two types of grating facets:

HEG: High Energy Grating, which covers the inner two mirror shells;
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MEG: Medium Energy Grating, which covers the outer two mirror shells.

Figure 14: A closeup view of the LETG facets. The facets are the small disks. They are arranged on larger circles which fall
behind the mirror shells.

Each grating instrument was designed for a particular detector array. The primary combination are:

HETG → ACIS-S (HETGS - the High Energy Transmission Grating Spectrometer)

LETG → HRC-S (LETGS - the Low Energy Transmission Grating Spectrometer)

Another useful configuration is LETG/ACIS-S
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Figure 15: A schematic of the HEG and MEG
facets. The HETG gratings are gold bars on a
plastic substrate.

Figure 16: A schematic diagram of the in-
serted HETG and the focal plane image.

Figure 17: An image made from actual data, color-coded by energy. The positively sloped arm is from the HEG facets, and the
other is from MEG. The white central spot is the zeroth order. MEG and HEG each disperse into both positive and negative
orders, on opposite sides of the zeroth order.
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3.1 Detector Characteristics
• The ACIS-S CCDs have enough energy resolution to separate the spatially overlapping orders.

• ACIS in timed-exposure mode (TE) has a relatively low time resolution (3 seconds). Bright sources can cause severe photon
“pile-up” which can distort zeroth order image.

• ACIS can be run in continuous-clocking (CC) mode, but at the expense of spatial information in the cross-dispersion direction.

• The HRC-S detector has poor energy resolution and so cannot resolve overlapping orders. This characteristic must be handled in
analysis by modeling.

• HRC-S has high internal background noise which must be incorporated into analysis.

See The Proposers’ Observatory Guide1 for more detail about Chandra’s gratings and detectors.

Figure 18: Chandra detector schematics. Grating readouts are the long arrays beneath each imaging array.

1http://cxc.harvard.edu/proposer/POG/
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3.2 A Gallery of Spectral Images
We will be more interested in the one-dimensional counts histograms, but first, a few more images may help you become more familiar
with the spectrometer characteristics.

LETGS (LETG/HRC-S) Images

Figure 19: The zero order region of an LETGS spectrum. We step out by factors of two from upper-left to lower-right. The
“star” pattern is diffraction from the grating coarse support structure. As we step out, you begin to see the detector boundary,
and some “fine support” diffraction (vertical streak). (The green cross and circle were added as markers for the zero order
position and region.)
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Figure 20: This is an image in sky coordinates, rotated to horizontal for better display. It shows the full HRC-S detector area
with an LETGS spectrum. The source spectrum is the nearly horizontal bright streak, with positive orders on one side and
negative on the other. The gaps between the 3 detector plates show as dark vertical lines. The faint radial features are from
cross-dispersion from the grating bar support structure. North is marked by the green arrow, and east by a green line (they
are not orthogonal in this view because of the non-square aspect ratio).
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Figure 21: This is an LETG/HRC-S spectrum in grating diffraction coordinates. This shows another important characteristic of
the LETGS: the spectrum gets wider at longer wavelengths. The green outline marks our default spectral extraction region.
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HETGS (HETG/ACIS-S) Images

Figure 22: The zero order region of an HETGS spectrum. We step out by factors of two from upper-left to lower-right. As we
step out, you begin to see the detector boundary, the “frame shift streak” (vertical feature) and the diffracted spectra. The
dark vertical region is a chip gap. Bright points are perhaps other sources in the field. We can also see that the zeroth order
is distorted and rather “boxy” — this is due to photon pile-up. (The green cross and circle were added as markers for the zero
order position and region.)
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Figure 23: This is an image in sky coordinates, rotated to horizontal for better display. It shows the full ACIS-S detector area
with an HETGS spectrum. The source spectrum is the “X”. HEG positive orders are to upper right, negative to lower left (in
blue box). MEG positive orders lie to lower right, and negative to upper left (in the red box). The gaps between the 6 CCDs
show as darkest vertical lines. The chips with brighter background (2nd and 4th from the left) are back-illuminated (BI) devices.
North is marked by the green arrow, and east by a green line (they are not orthogonal in this view because of the non-square
aspect ratio).
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Figure 24: This is an HETG/ACIS-S spectrum in grating diffraction coordinates. The bright vertical streaks are emission lines
in the source spectrum. The colored outlines mark our default spectral extraction regions.
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Figure 25: This is an HETG/ACIS-S “order sorting”
image. The horizontal axis is mλ, and the diffrac-
tion order, m, is on the vertical axis. The distri-
bution in the y-axis is characteristic of the intrinsic
CCD energy resolution. Order-sorting selects the
bright horizontal regions and excludes the back-
ground in between.

Figure 26: This another way to view the order-sorting. Here, the distributions
in CCD energy have not been “flattened”. The horizontal axis is still mλ, but
now the vertical axis is the CCD blurred energy.
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4 Practical Matters: Event Processing, Making Responses
What we really want in order to do data analysis are:

Grating PHA File: The binned counts vs wavelength (per order, per grating type);
Grating ARF: Ancillary Response File, the effective area;
Grating RMF: Response Matrix File, here, the line-spread function (but it also includes a correction factor on the effective

area).

The forward folding equation is:
C(h) = T

∫
S(E)A(E)R(E, h) dE (3)

C(h) is the number of counts in spectral channel h;

T is the exposure time;

S(E) is the source spectrum in [photons cm−2 s−1];

A(E) is my effective area (ARF) in [cm2] as a function of energy, E;

R(E, h) (the RMF) defines the redistribution of photons of energy E into channel h.

4.1 The Grating Processing Steps
Here is a description of the processes and the primary CIAO tools for transforming your events into one-dimensional spectral counts
arrays, and for computing the associated responses from observational and calibration information. The goals of the processing are to:

Reprocess the events to apply the most recent calibrations (optional);
Filter out the bad events (anytime before binning)
Determine an accurate zeroth order centroid;
Define the spatial regions which enclose the spectra and zeroth order;
Compute the dispersion coordinates for each event;
Resolve orders (if ACIS is the detector);
Bin the spectrum;
Compute the response matrices;
Compute the effective area files.
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4.2 The Grating Processing Tools
The CIAO tool which need to be executed to go from the event file to PHA file and responses are:

* process events: (optional) Re-run event processing to apply up-to-date calibration files. (Here “*” is to be replaced with acis or
hrc.)

filter bad events: Filtering can be done at the start, or end of the processing. If done at the start, then files will be smaller. (But any filter
requiring grating coordinates, such as a wavelength, will have to be done later.)

Example for ACIS: We filter on good grade, good status, and remove high energy (usually background) events:

dmcopy infile=’evt1[events][grade=0,2,3,4,6,status=0,energy<12000]’ outfile=evt1_filtered

In a separate step, we filter on the good-time-intervals in the “flt1” file.

dmcopy infile=’evt1[events][@flt1]’ outfile=evt1_filtered

Example for HRC: Here we select good PHA and status values and simultaneously apply the time filter.

dmcopy infile=’evt1[events][rawy=:16383,17070:32200,32980:,\

status=xxxxxx00xxxx0xxx0000x000x00000xx,@flt1]’ outfile=evt1_filtered

Note that this is not the only way to apply the filters. We can put the filters the input file specifications of other tools.

For ACIS we may also wish to apply the “destreak” filter. One CCD has artifacts, regions of spurious events in a horizontal streak.
This removes artifacts from CCD S4:

destreak infile=evt1_filtered outfile=evt1_filtered_destreaked filter=’yes’

tgdetect: Read the events; find the zeroth order’s centroid, and write the “src1a” file.

tg create mask: Given the zero order position, write the “reg1a” file which defines spatial masks for the zeroth order region and for
dispersed event regions. The spatial masks for the spectra are much wider than the spectrum so that they can also be used for local
background spectra;

tg resolve events: using the regions and the aspect solution, compute diffraction coordinates for each event, given the zero order reference
and spatial regions. If the detector is ACIS, also perform order-sorting to assign an order to each event, or flag it as background if it
is outside the order-selection boundaries.
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tgextract Bin the events into one-dimensional counts histograms.

Example for LETG/HRC-S: Note that the input file specification also includes a filter. This is a standard filter which reduces the
HRC-S instrumental background. The other parameter shown indirectly refers to a default calibration database file which applies a
spatial region filter appropriate for LETGS (a “bow-tie” shape which follows the outline of the spectrum; see Figure 21).

tgextract \

infile="evt2[(tg_mlam,pi)=region($CALDB/yadayada/letgD1999-07-22pireg_tgmap_N0001.fits)]"\

inregionfle=CALDB outfile=pha2.fits

Example for HETG/ACIS:

tgextract infile=evt2 outfile=pha2.fits

tg bkg This is a script which the background components in the PHA file output by tgextract. It is important for HRC-S, but may be
omitted for ACIS data.

dmtype2split This is also for use with LETG/HRC-S to convert the background file output by tg bkg from “Type II” to “Type I” PHA
files (see below for definitions)

dmtype2split outfile=’pha2_bg_-1[SPECTRUM],pha2_bg_1[SPECTRUM]’

mkgrmf: Makes a grating response matrix. We need one for each order of interest, typically ±1 for HETGS and LETG/ACIS-S, but up
to ±8 for LETGS. These change very little, if at all, from observation to observation. If you wish, you may make a set once, then
use it repeatedly. The only exception is if you use a non-standard region width (cross-dispersion) in tgextract. There is little
cost to just make them for each observation, just to be safe.

fullgarf: This is a script which packages several other tools which make the grating ARFS. ARFs are make for each chip, then summed,
so running the individual steps can be tedious.

The subsidiary tools run by fullgarf are:

asphist: Make an “aspect histogram”. This is a table of the exposure time for aspect offset bin
The aspect histogram for HRC-S requires specification of the “dead time factor” file:
dtffile=’dtf1’
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pset ardlib: There is a software library used by many response tools called “ardlib”, in which “ARD” stands for Analysis Reference
Data. Some parameters need to be set with observational values. For example, to set the observation-specific bad pixel files
necessary for making responses (ACIS will have 6 such psets for bad pixels:
pset ardlib AXAF_HRC-S_BADPIX_FILE=’bpix1’

mkgarf: This actually constructs the grating ARF. It must be run for each detector element and order of interest.

dmarfadd: This combines all the per-chip files written by mkgarf into one “full” ARF per grating per order.

These tools are fully documented on the CIAO help pages and in threads. The ahelp files have many explicit examples of tool usage.
(See Section 9 for relevant links.)

5 Description of the Important Files

5.1 The Event File: Your New Best Friend
Become familiar with the contents of the event file. You may need to to look for confusing sources, to inspect background, to verify zeroth
order quality, to make pretty pictures. You can use dmlist to see the columns: dmlist evt2 cols

These are some the columns and definitions in a grating event file (as output by tg resolve events with the standard event
definition. The galleries in Section 3.2 were made from binned counts in variations of these coordinates.

These are present in Level 1:
time event time tag
chipx,chipy chip pixel
tdetx,tdety tiled detector coordinate
x,y sky pixel
ccd id CCD index (ACIS)
chip id Chip index (HRC)
energy “blurred” photon energy (ACIS)
grade event geometry code (ACIS)

These are added by tg resolve events:
tg r grating angular coordinate, degrees in-dispersion
tg d grating angular coordinate, degrees cross-dispersion
tg srcid a source counter, starting at 1
tg part grating type: 1→ HEG; 2→MEG; 3→LEG;

99→ background; 0→ zeroth order
tg mlam order × wavelength
tg m order
tg lam wavelength [Å]
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5.2 The PHA File
Now that you have obtained a PHA file, this is where your work will be centered. It helps to understand the file contents and types of PHA
files.

Type II: This format has the counts spectra and associated data as array columns. Other information is also in the same row, such as
the order and grating type, as well as other required field. This is the default format for CIAO. Using this format we can pack the
spectra for 12 orders of HETGS (-3 to +3 for two gratings) into a single table.

Type I: This contains a single spectrum in a column oriented file. Some necessary information is in the header, such as order and grating
type.

For Chandra data we also include wavelength coordinates in columns called BIN LO, BIN HI. These are not required by the spectral
standard. The other “2” associated with the “pha2” file is not to be confused with “Type II”. The digit “2” refers to a “Level 2” data
product (see the CIAO dictionary). The CIAO tool dmtype2split (which breaks the rule of “2” vs “II”) will convert from “Type II” to
“Type I”. Either Type can be read by most X-ray spectral analysis packages.

Here are the columns of a Chandra pha2 file:
Column Unit Type Description
SPEC NUM Int2 Spectrum Number
TG M Int2 Diffraction order
TG PART Int2 Spectral component (HEG, MEG, LEG)
TG SRCID Int2 Source ID, output by detect
X pixel Real4 X sky coord of source
Y pixel Real4 Y sky coord of source
CHANNEL[16384] Int2(16384) Vector of spectral bin numbers.
COUNTS[16384] count Int2(16384) Counts array
STAT ERR[16384] count Real4(16384) Statistical error on counts
BACKGROUND UP[16384] count Int2(16384) Background count vector.
BACKGROUND DOWN[16384] count Int2(16384) Background count vector.
BIN LO[16384] angstrom Real8(16384) Bin boundry, left edge
BIN HI[16384] angstrom Real8(16384) Bin boundry, right edge

For LETGS, TG Mwill be−1 or +1, and the file will have only 2 rows. For HETGS, the default product has orders−3 to +3 (excluding
0) for the two grating types, and will have 12 rows. The default array length for LETGS is 16384 bins, and half that for HETGS.
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5.3 ARFs, RMFs, and all that.
The three most important things about data analysis are calibration, calibration, and calibration. The ARFs combine the (epoch
dependent) effective area and efficiency calibrations of the mirrors, gratings, filters, and detectors. They also incorporate the aspect dither
- chip gaps will be bowl shaped depressions in the response. The ARFs also include bad pixels, which when dithered appear as cuspy
depressions. The RMF contains the calibration of the instrumental profile, a combination of the mirror and grating blurs.
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6 Analyzing Your Spectra
Now that you have the PHA file, the ARFs and RMFs, you can begin analysis. You need to choose an analysis system like ISIS or Sherpa.
The procedure is usually something like:

Load data
Inspect data
Load ARFs
Load RMFs
Assign responses to data
Notice/ignore spectra or regions
Group or combine data if necessary
Define a model
Fit the model
Inspect the residuals
Determine confidence limits
Save results

As an elementary case, lets fit a single Gaussian plus a constant to O VIII in the MEG -1 order.
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Here is an ISIS example:

isis> load_data("pha2", 9) ; % row 9 is MEG -1
isis> plot_data( 1 ) ;
isis> load_arf( "meg_-1.arf" ) ;
isis> load_rmf( "meg_-1.rmf" ) ;
isis> list_data; list_arf; list_rmf;
isis> assign_rsp( 1, 1, 1 ) ;
isis> fit_fun( "gauss(1)" );
isis> set_par( "gauss(1).area", 0.001, 0, 1.e-5, 0.1 ) ;
isis> set_par( "gauss(1).center", 18.97, 0, 18.94, 18.99 ) ;
isis> set_par( "gauss(1).sigma", 0.005, 0, 1.e-5, 0.1 ) ;
isis> group_data( 1, 2 );
isis> xnotice( 1, 18.85, 19.08 );
isis> set_fit_method( "subplex" ) ;
isis> fit_counts;
isis> xrange( 18.85, 19.08 ) ;
isis> pid = open_plot("o8fit_i.ps/vcps"); resize(16,1.0);
isis> rplot_counts( 1 ) ;
isis> close_plot( pid ) ;
isis> conf( "gauss(1).center" );
isis> save_par("o8.par");
isis> (clo, chi)=conf_loop("gauss(1).*"; save, prefix="o8/conf");

Figure 27: Plots from ISIS fitting script.
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Sherpa steps are similar (CIAO 4.2):
sherpa> load_pha( "pha2[tg_part=2,tg_m=-1]" )
sherpa> load_arf(1, "meg_-1.arf" )
sherpa> load_rmf(1, "meg_-1.rmf" )
sherpa> show_all(1 )
sherpa> get_data(1).units="wavelength"
sherpa> plot_data( 1 )
sherpa> set_source(1, normgauss1d.gauss1+polynom1d.poly1)
sherpa> gauss1.pos.val = 18.967
sherpa> gauss1.pos.min = 18.94
sherpa> gauss1.pos.max = 18.99
sherpa> gauss1.fwhm.val = 0.001
sherpa> gauss1.fwhm.min = 1.e-5
sherpa> gauss1.fwhm.max = 0.1
sherpa> gauss1.ampl.val = 0.0002
sherpa> gauss1.ampl.min = 1.e-5
sherpa> gauss1.ampl.max = 0.01
sherpa> poly1.c0.val=0.0005
sherpa> poly1.c0.min=1.e-8
sherpa> poly1.c0.max=0.1
sherpa> group_width(1, 2)
sherpa> notice_id(1, 18.85, 19.08 )
sherpa> set_method( "neldermead" )
sherpa> fit( 1 )
sherpa> plot_fit_delchi( 1 )
sherpa> print_window( "o8fit_s.ps")
sherpa> conf( 1 )
sherpa> show_model(1, outfile="o8_s.par" )

Figure 28: Plots from Sherpa fitting script.
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Both ISIS and Sherpa are scriptable, extensible analysis packages. ISIS is based on S-Lang; Sherpa uses Python. They each provide
access to low-level data and allow you to customize arbitrarily. For instance, in ISIS to define a new model:

define my_function_fit( xlo, xhi, param )
{
% insert code here to compute y = f( xlo, xhi, params )
return (y ) ;

}
add_slang_function( "my_function", param_names ) ;
fit_fun( "my_function( 1 ) * wabs(1)" );

See the ISIS web pages or CIAO/Sherpa threads for more detailed examples.
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6.1 Physical Models, Atomic Data
For many astrophysical models we rely on the xspec library. ISIS provides an interface to the Astrophysical Plasma Emission Database
(APED) which allows evaluation of line or continuum emissivity functions and evaluation of model spectra for single ions, to pick two
examples. Here is an ISIS example which lists model line fluxes for a multi-temperature plasma:

isis> plasma( aped ) ; % load the database
isis> % Use the plasma variable to define a multi-thermal model:
isis> p = default_plasma_state;
isis> p.temperature = 10ˆ[ 6.2, 6.8, 7.2 ] ;
isis> p.norm = [ 1, 2, 3] * 0.001 ; % guess the normalization.
isis> p.elem = [ Ne, Fe ] ;
isis> p.elem_abund = [ 1.0, 0.6 ] ; % use non-solar ratio of Ne, Fe
isis> create_aped_fun( "Aped_3T", p ) ;
isis> fit_fun( "Aped_3T(1)" );
isis> eval_fun( 13.5, 13.6 ) ;
isis> lines_in_region = where( wl( 13.5, 13.6 ) ) ; % get info from APED
isis> page_group( brightest(6, lines_in_region ) ); % list the brightest lines
# index ion lambda F (ph/cmˆ2/s) A(sˆ-1) upper lower label
129758 * Fe XXI 13.507 6.468e-06 1.605e+12 42 7
39128 * Fe XIX 13.518 1.733e-05 1.868e+13 68 1
77544 * Fe XX 13.535 9.947e-07 4.121e+12 107 7
38922 * Fe XIX 13.551 1.143e-06 4.436e+12 65 1
3946 * Ne IX 13.553 5.048e-06 6.500e+09 5 1 1s2p˜ˆ3P_{1} - 1sˆ2˜ˆ1S_{0}

129754 * Fe XXI 13.574 1.108e-06 3.866e+11 39 7

You can see that Fe XIX blends with Ne IX. To be thorough, you can search for other Fe XIX lines:

isis> eval_fun(10, 19);
isis> page_group( brightest(5, where( el_ion(Fe, 19) ) ) ) ;
# index ion lambda F (ph/cmˆ2/s) A(sˆ-1) upper lower label

38915 * Fe XIX 13.497 7.867e-06 1.292e+13 71 1
39128 * Fe XIX 13.518 1.733e-05 1.868e+13 68 1
39132 * Fe XIX 13.795 6.989e-06 5.353e+12 53 1
38901 * Fe XIX 15.079 6.290e-06 9.785e+10 11 1
40009 * Fe XIX 16.110 8.035e-06 7.226e+10 37 6
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Some examples of the plasma database use in ISIS showing the model and line indentifications are in Figures 29 & 30.

Figure 29: Capella and APED model in ISIS;
observed–black; model counts–red; unconvolved
thermal profiles – gray; unconvolved delta profiles
– light gray.

Figure 30: σ Gem and APED model in ISIS;
observed–black; model counts–red. The lower
panel shows residuals.

xo
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WebGuide can also be a convenient interface to APED. It allows simple queries, and provides primary references to the data.

Figure 31:A portion of the WebGuide page output of “Identify” (http://cxc.harvard.edu/atomdb/WebGUIDE/)
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6.2 Multiple orders, multiple gratings, multiple observations
Some common issues regarding grating data are:

1. I have an HETGS observation. How do I add plus and minus orders? How do I combine HEG and MEG? What about orders 2 and
3?

2. My observation was done in two parts, or, Object X was observed 5 times. How do I combine them?

3. How do I add RMFs?

4. Do I need to subtract background?

5. LETGS has overlapping orders. How do I fit a spectrum?

Items 1 & 2 are effectively identical.
There is no compelling reason to add multiple orders or observations into one file! Reasonable solutions use the high-level products –

PHA, ARF, and RMF files; DON’T start by combining event files!
Advantages: Ability to include or exclude any spectrum during analysis; maintains unique responses and exposures.
Disadvantages: multiple files to handle; multiple datasets to manage.
It is ultimately a matter of scientific judgement about which path is appropriate. These are some of the techniques:

Joint analysis: Load the data of interest. Notice them all and fit jointly. Each spectrum can be binned appropriately within the analysis
session. Choose a statistic appropriate to the counts. This will work for multiple orders or observations transparently.

Dynamically combined data: ISIS has a function, combine datasets, which specifies that spectra and corresponding models are
to be summed (in memory) prior to computing the statistic. This increases the signal-to-noise ratio (S/N ) per bin. You can even
combine HEG and MEG if you first regrid them and the responses to match (also possible within the session, in memory).

Separate analysis: If the S/N of your data is very high, systematic calibration errors could dominate, and it may be better to fit each
spectrum separately, then decide later how to combine the results.

Add as files: If you really want to sum data on disk, use add pha (an ISIS-based script with CIAO tool interface) and dmarfadd (a
CIAO tool)2. This method is transparent to summing orders or observations.

2http://space.mit.edu/cxc/analysis/add_pha/index.html
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Add pha with dmarfadd supercedes two scripts, add grating orders and add grating spectra, though these are still
available.

Higher HETGS orders: For most observations, you can ignore them. Exceptions: multiple observations (12 Capella spectra), bright
X-ray binaries: you might have enough signal in HEG 2nd or MEG 3nd orders.

Combining RMFs: We don’t. There is practically little difference between positive and negative orders, nor between observations. There
are differences for non-standard extraction region widths, so if the spectrum’s extraction aperture was narrowed to avoid confusing
sources, then the RMF’s line profile (and enclosed energy fraction) will change. IF you added data as files, then you can use a set
from one observation (and from one side if positive and negative were combined).

Background: is usually ignorable for HETGS, or LETG/ACIS-S for λ < 30. For LETG/HRC-S it is important and must be included in
modeling. (See 4.2 & 7.1.)

Multiple orders of LETGS are handled by assigning multiple responses to a single spectral counts histogram. For example:

isis> load data("letgs pha", 2 ) ;
isis> load arf("leg 1.arf") ;
...
isis> load arf("leg 8.arf") ;
isis> load rmf("leg 1.rmf") ;
...
isis> load rmf("leg 8.rmf") ;
isis> assign rsp( [1:8], [1:8], 1 ) ;

When the model counts are evaluated, each ARF-RMF pair are applied and summed. (See additional examples on the ISIS web
pages.)
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Figure 32: An example of LETGS higher orders.
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7 Various Other Details

7.1 Backgrounds
For analysis, don’t NEVER EVER subtract background! Your statistics will be tricky. There is no necessity for subtracting background for
analysis. (You can subtract backgrounds for presentation.)

If background is important, use a system which adds background to the model counts.
(It is perfectly fine, however, to inspect and display background subtracted data.)

7.2 ACIS CC-mode: risky business?
It’s not so bad. CC-mode spectral extraction works basically the same way as for TE. Input data might look funny, but we still do the same
basic steps and produce the same products. Some of the calibration products may not be as good, and CTI correction is not done. So some
care is needed in interpretation.

7.3 Extended Sources, Multiple Sources
Extra care is needed with source and background regions. See the options on tg create mask and tgextract.

For extended sources, you typically want to increase the widths.
For crowded sources you probably want to decrease the widths.
For LETG/HRC-S, you may also need to adjust the background regions.

7.4 Flux Correction?
Flux correction can be done by dividing the counts by the ARF and exposure time to get units of [photons cm−2 s−1]. It is more accurate
to use both the ARF and RMF in analysis. So, always, ALWAYS use the RMF.

Flux correction in ISIS, for example, doesn’t just divide the counts by the ARF, but divides the counts by the
∫

ARF× RMF dE.
The Chandra grating RMF also contains a portion of the effective area, related to the cross-dispersion selection region which clips the

wings of the spatial distribution.
We don’t normally model flux corrected data, but it is very useful for visualization of data and models.
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7.5 Time Slicing
Many sources are variable and we may want spectra vs time or state. An easy way to produce spectra for different times is to dmcopy
your event file using your externally derived GTI tables. Then you run those individual event files through the same grating processing
threads.

Figure 33: Example X-ray flare light curves of coronally active stars, II Peg and EV Lac.
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8 TGCat Reprise: The Catalog and Archive of Chandra Grating Data
TGCat has three major parts.

Catalog: Search by name, object type, coordinate, obsid, instrument. Plot interactively, optionally rebinning, combining orders or obser-
vations, and with a wide selection of units. Obtain VO tables or ASCII listing of search results.

Archive: Analysis-ready products: binned spectra, responses, event files, light curves. Updated automatically as data become public
(after human review). Queue packages for download.

Software: All the software used to drive the CIAO reprocessing and to generate summary products is available for download and use. As
the pipeline processes are run, the CIAO commands are echoed to the terminal. Example:

unix> # retrieve the data from cdaftp and configure directories:
unix> download_obs 5 1103

unix> # start isis, load software:
unix> isis
isis> require( "tgcat" );

isis> % run standard extraction for ObsID 5:
isis> run_pipe( "obs_5" );

isis> % set alternate detection method and run extraction for ObsID 1103:
isis> s = set_source_detection_info("findzo");
isis> run_pipe( "obs_1103"; detect_info = s);

isis> % spawn a look at summary products:
isis> ! display obs_5/summary*.ps

isis> % continue with detailed analysis:
isis> d = load_set_acis( "obs_5", [3,4,9,10] );
isis> plot_data( 1 ) ;
isis> fit_fun( "(gauss(1)+poly(1)) * wabs(1)" ); % etc ...
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9 Links to Additional Resources
APED: A spectroscopy database for X-ray emission

http://cxc.harvard.edu/atomdb/

CIAO dictionary: http://cxc.harvard.edu/ciao/dictionary/

CIAO grating threads: Detailed recipes for performing some common tasks;

http://cxc.harvard.edu/ciao/threads/gspec.html

ISIS: The the Interactive Spectral Interpretation System, developed especially for working with Chandra grating spectra; includes an
interface to an atomic database (APED)

http://space.mit.edu/cxc/isis/

IXO information: Scientific justifications for IXO high-resolution spectroscopy

(http://space.mit.edu/home/nss/cat_science.html )

Paerels & Kahn (2003) review: “High-Resolution X-Ray Spectroscopy with CHANDRA and XMM-NEWTON”

((2003) Ann.Rev.A&A, 41,291).

POG: The Proposers’ Observatory Guide - detailed descriptions of all components of Chandra.

http://cxc.harvard.edu/proposer/POG/

summing spectra: http://space.mit.edu/cxc/analysis/add_pha/index.html

TGCat: The Chandra Catalog and Archive of Grating Data:

http://tgcat.mit.edu/

Tool help “ahelp” for CIAO tools:

http://cxc.harvard.edu/ciao/ahelp/

WebGuide: interactive atomic data;

http://cxc.harvard.edu/atomdb/WebGUIDE/
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Appendices
A LETG/ACIS-S Images

Figure 34: The zero order region of an LETG/ACIS-S spectrum. We step out by factors of two from upper-left to lower-right.
As we step out, you begin to see the detector boundary, the “frame shift streak” (vertical feature) and the diffracted spectra.
We can also see that the zeroth order is heavily distorted, so much that it has a “crater” (hole in the center) — this is due to
severe photon pile-up and rejection of events before telemetry. The LETG cross-dispersion “star” and radial lines are also
apparent. (The green cross and circle were added as markers for the zero order position and region.)
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Figure 35: This is an image in sky coordinates, rotated to horizontal for better display. It shows the full ACIS-S detector area
with an LETG/ACIS-S spectrum. The source spectrum is the bright horizontal streak. The gaps between the 6 CCDs show
as darkest vertical lines. The chips with brighter background (2nd and 4th from the left) are back-illuminated (BI) devices.
The LETG cross-dispersion features are clear. North is marked by the green arrow, and east by a green line (they are not
orthogonal in this view because of the non-square aspect ratio).
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Figure 36: This is an LETG/ACIS-S spectrum in grating diffraction coordinates. The slight tilt is an unsolved calibration or
software issue. The colored outlines mark our default spectral extraction regions.
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Figure 37: This is an LETG/ACIS-S “order sorting” image. The horizontal axis is mλ, and the diffraction order, m, is on the
vertical axis. The distribution in the y-axis is essentially from the intrinsic CCD energy resolution. Order-sorting selects the
bright horizontal regions and excludes the background in between. With LETG on ACIS-S, we get to wavelengths longer than
the CCDs can detect and resolve well.

CXC 44



Grating Data Analysis C THANKS

B Spectral Image Visualization with Ds9
Some of the images shown in Section 3.2 can be made in ds9 using the “Bin → Binning Parameters...” and “Zoom → Pan
Zoom Rotate Parameters...” menus. For example, choosing a Capella HETGS observation (ObsID 1103) (use a log-intensity
scale and delete regions for a good view):

> ds9 evt2 &
To set binning parameters for the full field image:

1. Choose “Bin columns” x and y;

2. Block each by 8

3. Choose “Bin center” or center of data checkbox.

The rotation depends on the observation. You can get it from menu “File → Display Fits Header..., evt2[EVENTS]”,
and look for ROLL NOM. (98.2◦ for this observation).

For diffraction coordinates, we can use something like

1. Choose “Bin columns” tg mlam and tg d;

2. Block tg mlam by 0.08, and tg d by 5.0e− 05.

3. Choose “Bin center” checkbox “or center of data”;

4. Set a Bin Filter to tg part==2, abs(tg m)==1.

Set the rotation to 0.0.

C Thanks
Thanks to Nancy Brickhouse and Randall Smith for previous versions of this Workshop topic, from which I borrowed heavily.
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