

The CIAO Contributed Scripts (and a brief introduction to CIAO)

Jonathan McDowell & The CIAO Scripts Team

8th Chandra/CIAO Workshop, 6 August 2011

The CIAO Contributed Scripts - Jonathan McDowell

Part 1: a brief introduction to CIAO

8th Chandra/CIAO Workshop, 6 August 2011

What is CIAO?

CIAO is a free, open-source software package developed at the Chandra X-ray Center. CIAO stands for "Chandra Interactive Analysis of Observations"

- It is a collection of programs (tools, applications, scripts, Python modules).
- Generally run from the command line, although some pieces can be run from GUIs.

CIAO 4.3 is supported on

- Linux 32bit & 64bit
- Mac OS X 10.5 & 10.6 Intel 32bit & 64bit
- Solaris 10

Use "ciaover -v" within CIAO to report the platform information and which version of CIAO is installed:

unix% ciaover	
	nvironment is configured for:
CIAO	: CIAO 4.3 Monday, April 18, 2011
Tools	: Package release 2 Monday, April 18, 2011
Sherpa	: Package release 1 Thursday, December 2, 2010
Chips	: Package release 1 Thursday, December 2, 2010
Prism	: Package release 1 Thursday, December 2, 2010
Obsvis	: Package release 1 Thursday, December 2, 2010
Core	: Package release 1 Thursday, December 2, 2010
Graphics	: Package release 1 Thursday, December 2, 2010
bindir	: /Users/user/Documents/ciao-4.3/bin
Python path	: CIAO

```
CIAO Installation: osx64
System information:
Darwin dhcp-131-142-152-156.cfa.harvard.edu 10.8.0 Darwin Kernel Version
10.8.0: Tue Jun 7 16:33:36 PDT 2011; root:xnu-1504.15.3~1/RELEASE I386 i386
```


File Formats

- Chandra data is stored in FITS format. ASCII (text) files can now be handled by all tools and applications through the new software library known as the "ASCII kernel"
- When CIAO operates on data it stores processing state/information along with data (keywords, subspace).
- A single file can contain multiple "datasets" (e.g. data, GTI, weight map, regions) stored in "blocks".
- Blocks can contain image or table data. Table columns can be vectors.
- dmlist (a command line tool) or prism (a GUI) are available to view file contents.

Parameter Files (ahelp parameter)

The parameters for CIAO tools can be set on the command line or, as with IRAF and FTOOLS, using parameter files. Parameters files are ASCII format and are named <tool>.par (e.g. dmcopy.par).

Local copies of the parameter files are stored in \$HOME/cxcds_param4. Always delete or rename the local files when upgrading CIAO to a new version.

There are number of CIAO tools (e.g. plist, pset, punlearn) that are used to read and write to the parameter files.

Filters, Regions, and GTIs

- filtering (removal of unwanted events) is an essential part of X-ray analysis e.g. to remove periods of high background or poor aspect solution, exclude uninteresting sources from an image.
- the DataModel (DM) provides great filtering flexibility: e.g. dmstat "evt2.fits [EVENTS] [energy>300][cols-grade]" (see ahelp filtering, ahelp dmimgfiltering)
- GTIs (Good Time Intervals) are used to define what times periods of the observation can be used (i.e. contain valid data). They are generally stored as a block in the event list (see ahelp chandra times)
- Regions are used to define the source and background areas of an image. They are text files that can be created manually or within ds9, and are used as a filter (e.g. "[sky=region (source.reg)]"). (see ahelp dmregions)
- Subspace records the filters applied to a file; dmlist can read this history using opt=subspace (see ahelp subspace)

Scripting Languages

- The main scripting (or interpreted = no compilation is necessary) language supported in CIAO via Sherpa and ChIPS is Python.
- Sherpa and ChIPS are importable modules for Python
- You **do not** need to know Python to use Sherpa and Chips, but if you do, you will be able to use its capabilities in your analysis (see Doug's talk on "Scripting in CIAO")

The second half of this talk focuses on the Python scripts that we have written to automate common analysis tasks. These scripts are available to users in the contributed scripts tarfile, which is part of a standard CIAO installation.

CIAO Overview

Data manipulation: copy, filter, extraction, stats, etc.

Data preparation (or Chandra-specific instrument tools): update calibration, correct for instrumental effects, find & extract grating data, create aspect histograms

Response tools: exposure map, PSF, RMF and ARF

Source Detection: celldetect, wavdetect, vtpdetect

Timing & Background tools: lightcurve, power spectrum, barycenter correction

Convolutions, Transforms, & Smoothing: csmooth, aconvolve, acrosscorr, apowerspectrum Plotting: ChIPS (*)

Modeling/Fitting: Sherpa (*)

GUIs: DS9, prism,peg

(*) powerful data manipulation and scripting capabilities are now possible in these applications through the Python interpreted language.

The Data Model and the Data Manipulation Tools

- The CXC analysis and processing software is built on a common versatile interface library called the CXC Data Model (or just DM).
- The DM provides users with a powerful built-in data filtering and binning capability.
- The DM includes an "ASCII kernel" which gives the ability to operate on certain ASCII (text) file the same way as on FITS files (e.g. for filtering, plotting etc.)
- Any program that asks for a data file name as input accepts a *"virtual file"* string which allows the program to see a filtered version of the file in question.
- All columns of event lists are treated "equally": binning is allowed not only in spatial coordinates but also in time, energy coordinates, for example, giving the ability to create multidimensional images in space-energy, or space-time, etc.

Data Manipulation Tools

The four "core" DM tools are:

dmlist: list contents or structure of a file

dmcopy: filter and bin tables and images

dmextract: make a histogram table file (e.g. PHA file, lightcurve file) from a table column. Generate count histogram on supplied regions for a spatial table or image file.

dmgti: create custom Good Time Intervals (GTIs) from a constraint expression

There are over 40 "DM" tools in CIAO.

dmap dmpend dmellipse dmhedit dmimgfilt dmimgreproject dmmakereg dmreadpar dmtype2split dmarfadd dmextract dmhistory dmimghist dmimgthresh dmmaskbin dmregrid dmcontour dmfilth dmimg2jpg dmimglasso dmjoin dmmaskfill dmregrid2 dmcoords dmgroup dmimgadapt dmimgpick dmkeypar dmmerge dmsort dmcopy dmgroupreg dmimgblob dmimgpm dmlist dmnautilus dmstat dmdiff dmgti dmimgcalc dmimgproject dmmakepar dmpaste dmtcalc

Data Model Syntax (ahelp dmsyntax)

In the DM context, a "virtual file" in represented by a filename followed by a series of optional qualifiers in square brackets []:

"filename[block][filter][columns/binning][options][rename]"

block - is the "section" of the file to use

filter- is the filter to be applied

columns/binning - specifies either the columns from a table to be included in an output table or the binning. When binning the data to generate an n- dimensional image, the range and binsize (min:max:bin) must be specified.

options - a sequence describing special options for the DM library

rename - specifies a name for the new block

Note that:

- the order of the qualifiers generally matters
- it isn't necessary to always specify all qualifiers

Simple examples of "virtual files"

Select the first three columns of the EVENTS block by number: acisf01843N001_evt2.fits[EVENTS] [time=84245787:84247000] [cols #1,#2,#3] or by name: acisf01843N001_evt2.fits[EVENTS][grade=0,2,3][cols time,ccd_id,node_id] after filtering in time or grade

Bin an events file to create a PI spectrum for a specified region (input for dmextract): acisf01843N001_evt2.fits[EVENTS] [sky=region(mysrc.reg)][bin pi=1:1024:1]

```
or an image (input for dmcopy): acisf01843N001_evt2.fits
[x=3600:4000,y=3800:4200]" acis_center.fits
```


The CIAO Contributed Scripts - Jonathan McDowell

Part 2: the CIAO Contributed Scripts

8th Chandra/CIAO Workshop, 6 August 2011

Installing the Contributed Tarfile

The contributed tarfile is included in the "Quick Installation" option on the CIAO download page. It may also be selected as part of the "Custom Installation" process.

The scripts depend on the components of a "standard" CIAO installation: tools, ChIPS, Sherpa, and the CALDB. If you have installed a customized version of CIAO, it is possible that some of the scripts and modules will fail due to a missing package.

Downloading CIAO 4.3

WHAT'S NEW | WATCH OUT

The ciao-install script is designed to simplify and automate the installation and upgrade of the CIAO and the Chandra Calibration DataBase (CALDB). ciao-install FTP verifies them via md5sum, and unpacks them. The script configures CIAO, sets up the command-line ahelp system, and (optionally) runs the CIAO smoke tests.

The ciao-install. README file had detailed information on the script. For a summary of options, run the script with the "--belp" option.

Known issues are listed on the Installation & Smoke Tests bug page

Quick Installation | Custom Installation | Manual Installation

This method allows ciao-install to determine what platform you are using, then downloads and installs the standard CIAO installation: CIAO tools, ChIPS, Sherpa, the contributed science scripts.

For existing CLAO installations, this method may also be used to download and install software patches and contributed science script updates.

1. Download the clao-install Script

Quick Installation

2. Run the script:

unix% bash /<path>/ciso-install

For detailed instructions, refer to the ciao-install thread page. Known issues are listed on the Installation & Smoke Tests bug page

Custom Installation

Select the CIAO and CALDB packages you need, then download the custom ciao-install script to install them.

← here

Clear Selections

Step 1: Choose a Platform

Autodetect Platform

The default setting - "Autodetect Platform" - allows ciao-install to determine what platform you are using and to select the appropriate build of CIAO.

The Platform Support page has more information on the officially supported CIAO platforms.

Step 2: Customize your Software Installation

Standard CIAO installation

Selects a complete binary installation of CIAO tools, ChIPS and Sherpa, the main CALDB tarfile, and the contributed science scripts.

Binary Packages

- ----

CIAO analysis tools - v2 (26 April 2011)
 Sherpa modeling and fitting package - vi

Contributed Science Scripts

The contributed science tarfile contains analysis scripts and modules that extend the functionality of CLAO

Contributed Scripts - version 07 July 2011

8th Chandra/CIAO Workshop, 6 August 2011

— or here

How to reduce your Chandra data in four easy steps:

unix% download_chandra_obsid 198

unix% cd 198 unix% chandra_repro ./ out=repro

unix% fluximage repro_evt2.fits out=198 bin=2 bands=CSC

unix% specextract "repro_evt2.fits[sky=circle(4088,3982,10)]"
bkgfile="repro_evt2.fits[sky=circle(3880,3365,20)]" out=198

How to reduce your Chandra data in four easy steps:

1. download the data unix% download_chandra_obsid 198

2. reprocess the dataset unix% cd 198 unix% chandra_repro ./ out=repro

3. create a three-color fluxed image unix% fluximage repro_evt2.fits out=198 bin=2 bands=CSC

4. extract the spectrum and response files for fitting
unix% specextract "repro_evt2.fits[sky=circle(4088,3982,10)]"
bkgfile="repro_evt2.fits[sky=circle(3880,3365,20)]" out=198

* The event file is actually named acisf00198_001N003_repro_evt2.fits

download_chandra_obsid

Download public data by ObsId from the Chandra archive: unix% download_chandra_obsid 198

Specify multiple observations as a comma-separated list: unix% download_chandra_obsid 198,1838,459

Each of these commands will download all the archived data files for the given ObsIDs. An optional list of filetypes can be included to limit the download: unix% download_chandra_obsid 198 evt2,asol,bpix1

The supported filetypes are:

aoff aqual asol bias bpix cntr_img dtf eph0 eph1 evt1 evt2 flt fov full_img msk mtl oif osol pbk pha2 plt soff src2 src_img stat sum vv

The CIAO Contributed Scripts - Jonathan McDowell

download_chandra_obsid

The status of the download is printed to the screen. The -q or --quiet flags can be used to turn off screen output.

unix% download_chandra_obsid 198 evt2,asol,bpix1 Downloading files for ObsId 198, total size is 27 Mb.

Туре	Format	Size	0H1	Download Time Avera	age Rate
evt2 bpix asol	fits fits fits	25 Mb 10 Kb 1 Mb	# # # # # # # # # # # # # # # # # # #	7 s 3480 < 1 s 187 < 1 s 3962	
			r ObsId 198 = 27 Mb r ObsId 198 = 8 s		
acisf0019	-1 198/* 8_001N003_k 8N003_evt2. 03382N003_a	fits.gz	-		

download_chandra_obsid

This script doesn't have a parameter file because of its basic functionality, but there are several command-line flags. Running without arguments provides use information:

Usage: download_chandra_obsid <obsid1>,..,<obsidN> [<type1>,..,<typeN>]

Download public Chandra observations. The observations to download are given as a comma-separated list of ObsId numbers, and an optional comma-separated list of file "types" can also be given, which will only download files that contain the type strings. So an argument of '9123,9124' will download all data for the obs ids 9123 and 9124, whereas '9123,9124 fov,vv,evt2' will only download the V&V, fov, and evt2 files for these observations. The data is written to the current directory, with each obsid being saved to its own directory (following the layout used by the Chandra archive).

Options:

-h,help	show this help message and exit
-q,quiet	Download the files without any screen output? [default:
	False]
-v,version	List the version of the script and exit.
-c,copyrigh	t List the copyright for the script and exit.
-t,filetype	s List the valid file types and exit.
-d,debug	Display diagnostic output? [default: False]

The CIAO Contributed Scripts - Jonathan McDowell

download_chandra_obsid

Limitations and Special Cases:

- the script cannot download proprietary data, since it is password-protected in the Archive.
- you have to know the ObsID for the dataset. This may be found via WebChaser, from the target search form, or in literature references.

chandra_repro

Reprocess any ACIS and HRC imaging or grating data to apply the newest calibration and the filtering steps recommended in the CIAO analysis threads.

The required input is the directory which contains the data files (e.g. created by download_chandra_obsid). In this example, the input files are in the working directory; the output directory is called "repro" (the default):

unix% chandra_repro ./ out=repro

The script reads data from the standard data distribution (e.g. primary and secondary directories) and creates a new bad pixel file, a new level=2 event file, and a new level=2 Type II PHA file (grating data only).

The CIAO Contributed Scripts - Jonathan McDowell

chandra_repro

```
unix% chandra repro 198 out=repro
Running chandra repro
version: 28 April 2011
Running acis process events to reprocess the evtl...
Running destreak tool on evt1...
Filtering evtl by grade and status...
Applying the good time intervals from the flt1 file...
The new evt2 file is: /198/repro/acisf00198 001N003 repro evt2.fits
Updating event file header with chandra repro HISTORY record
Setting user ardlib for observation-specific bad pixel file
Cleaning up intermediate files
WARNING: Observation-specific bad pixel file set for session use:
         /198/repro/acisf00198 001N003 bpix1.fits
         Run 'punlearn ardlib' when analysis of this dataset completed.
The data have been reprocessed.
Start your analysis with the new products in
/198/repro
```


chandra_repro

Parameters for /soft/ciao-4.3/contrib/param/chandra_repro.par

```
indir = ./
        outdir = ./repro
         (root = )
     (badpixel = yes)
(process events = yes)
     (destreak = yes)
   (set ardlib = yes)
file?
 (check vf pha = yes)
data?
      (pix adj = default)
none | randomize
      (cleanup = yes)
      (clobber = no)
      (verbose = 1)
         (mode = ql)
```

Input directory Output directory Root for output filenames Create a new bad pixel file? Create a new level=2 event file? Destreak the ACIS-8 chip? Set ardlib.par with the bad pixel

Clean ACIS background in VFAINT

Pixel randomization: default|edser|

```
Cleanup intermediate files on exit
Clobber existing file
Debug Level(0-5)
```


chandra_repro

Limitations and Special Cases:

• special input cases: data taken in ACIS interleaved (alternating exposure) mode or that have multiple observation intervals (OBIs) will have more than one level=1 event file (evt1.fits) in the data distribution.

The input data has to be separated into different input directories before running the script.

• continuous-clocking mode data: the script assumes that the source coordinates in the header are accurate (RA_TARG,DEC_TARG). They might need to be adjusted before reprocessing the data.

fluximage

Create exposure-corrected images of an ACIS or HRC observation, given an events file for one or more energy bands.

There are four required inputs: event file, output root name, binning, and energy bands.

unix% fluximage repro_evt2.fits out=198 bin=2 bands=CSC

The binning factor specifies how large the output images will be.

The script has predefined energy bands taken from the Chandra Source Catalog: ultrasoft, soft, medium, hard, broad, wide, CSC (soft, medium, & hard). Bands can also be specified as "low:high:eff" in keV, where eff is the effective energy for the instrument map.

fluximage

unix% fluximage repro/repro evt2.fits out=198 bin=2 bands=CSC

Running fluximage... Version: 01 July 2011

Using CSC ACIS science energy bands.

Creating aspect histogram(s). Creating binned images.

Creating instrument maps in parallel.

Creating exposure maps in parallel. Exposure map limits: 0.000000e+00, 1.481394e+06 Writing exposure map to 198_7_0.92_bin2.expmap Exposure map limits: 0.000000e+00, 1.045427e+06 Writing exposure map to 198_7_3.8_bin2.expmap Exposure map limits: 0.000000e+00, 1.622567e+06 Writing exposure map to 198 7 1.56 bin2.expmap

Exposure-correcting images in parallel.

Cleaning up intermediary files.

(continued)

(output continued)

```
The following files were created:
 The binned counts images are:
     198 0.5-1.2 bin2.img
     198 1.2-2.0 bin2.img
     198 2.0-7.0 bin2.img
 The clipped counts images are:
     198 0.5-1.2 bin2 thresh.img
     198 1.2-2.0 bin2 thresh.img
     198 2.0-7.0 bin2 thresh.img
 The exposure maps are:
     198 0.92 bin2.expmap
     198 1.56 bin2.expmap
     198 3.8 bin2.expmap
 The exposure-corrected images are:
     198 0.5-1.2 0.92 bin2 flux.img
     198 1.2-2.0 1.56 bin2 flux.img
     198 2.0-7.0 3.8 bin2 flux.img
```



The CIAO Contributed Scripts - Jonathan McDowell

fluximage

The three-color image displayed in ds9.

The image display may be improved by smoothing the data in CIAO (csmooth, aconvolve) or interactively via the ds9 Analysis menu.

000					X SAOI	mage ds)				
File Edit	View	Frame	Bin Zoo	m Scale	Color	Region	WCS	Analysi	s		Help
File		198_2	.0-7.0_3.8	_bin2_flux	cimg						Sec. 1
Object		CAS A	CAS A [Chip S3, T=120, Offsets=0,0,0]								
Value		3.394	3.39453e-06 8.68505e-06 1.83849e-06						83 C	1.1	Sec.
FK5	0.	23:2	3:26.690	8	+58:50	:05.26		E	20 X	200	
Physical	Х	4108.500		Y	4151	.500				Sec. 2	
Image	×	280.500		Y	470.000				1.5	100	1000
Frame 2	Zoom	1.000 Angle 0.000		000	_			1.000			
file	edit	view	frame	bin	zoom	n sca	ale	color	region	wcs	help
- +	to fit	Z04	om 1/8	zoom 1/4	4 Z00	m 1/2	zoom	1 Z	pom 2	zoom 4	zoom 8

fluximage

Parameters for /soft/ciao-4.3/contrib/param/fluximage.par

```
infile =
                                  Input events file
       outroot =
                                  Output root of data products?
                                  Image binning factor
       binsize = 8
        bands = broad
                                  Energy bands, comma-separated list,
min:max:center in keV or ultrasoft, soft, medium, hard, broad, wide, CSC
                                  Input aspect solutions
     (asolfile = )
   (badpixfile = )
                                  Input bad pixel file
     (maskfile = )
                                  Input mask file
      (pbkfile = )
                                  Input pbk file for ACIS observations
      (dtffile = )
                                  Input dtf file for HRC observations
    (normalize = no)
                                  Normalize exposure map?
 (expmapthresh = 1.5\%)
                                  Remove low-exposure regions? '2%' excludes
pixels where exposure is < 2\% of the maximum
     (parallel = yes)
                                  Run processes in parallel?
       (tmpdir = ${ASCDS WORK PATH} -> /tmp) Directory for temporary files
      (cleanup = yes)
                                  Delete intermediaray files?
      (clobber = no)
                                  OK to overwrite existing output file?
                                  Verbosity level?
      (verbose = 1)
         (mode = ql)
```


fluximage

Limitations and Special Cases:

- When processing an HRC-I observation the HRC background CALDB package must be installed, otherwise the script will fail during processing.
- There are a few HRC-I observations taken before 1999-12-06 for which a background file is not available. fluximage cannot yet process this case.
- Running the script on ACIS grating data only uses zeroth- and null-orders (i.e. the non-diffracted events), but HRC uses all orders.

Extract source and background spectra and the associated ARF and RMF files for point and extended sources, including the zero-order of grating data. Extended source responses are weighted appropriately. The point-source aperture correction may be applied in the unweighted-ARF case.

unix% specextract "repro_evt2.fits[sky=circle(4088,3982,10)]"
bkgfile="repro_evt2.fits[sky=circle(3880,3365,20)]" out=198

This is a actually a simplified version of the specextract command. The full command for a point source might look like:

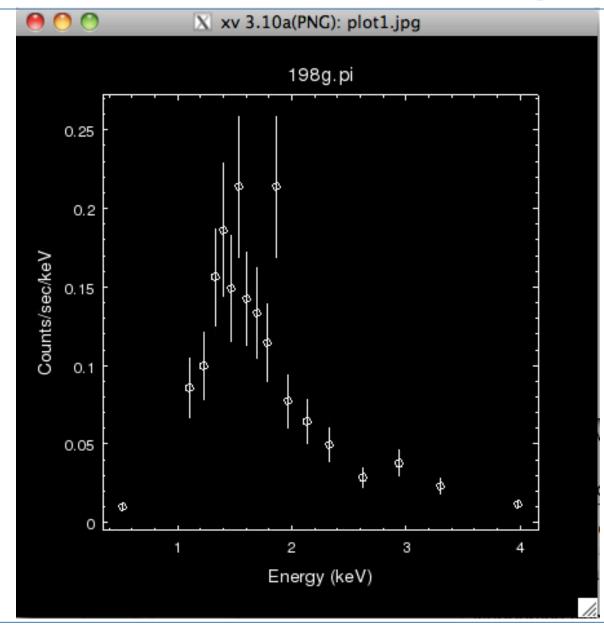
unix% specextract "repro_evt2.fits[sky=circle(4088,3982,10)]"
bkgfile="repro_evt2.fits[sky=circle(3880,3365,20)]" out=198
weight=no correct=yes asp=repro/pcadf075303382N003_asol1.fits
pbkfile=repro/acisf075304025N003_pbk0.fits mskfile=repro/
acisf00198_001N003_msk1.fits badpixfile=repro/
acisf00198_001N003_bpix1.fits


```
unix% specextract "repro evt2.fits[sky=circle(4088,3982,10)]"
bkgfile="repro evt2.fits[sky=circle(3880,3365,20)]" out=198
Running: specextract
 Version: 7 July 2011
Checking source input files for readability ...
Checking background input files for readability...
Setting bad pixel file for item 1 of 1 in input list
Extracting src spectra for item 1 of 1 in input list
Creating src ARF for item 1 of 1 in input list
Creating src RMF for item 1 of 1 in input list
Using mkacisrmf...
Grouping src spectrum for item 1 of 1 in input list
Updating header of 198.pi with RESPFILE and ANCRFILE keywords.
Updating header of 198 grp.pi with RESPFILE and ANCRFILE keywords.
```

(continued)

(output continued)

Setting bad pixel file for item 1 of 1 in input list


Extracting bkg spectra for item 1 of 1 in input list Creating bkg ARF for item 1 of 1 in input list Creating bkg RMF for item 1 of 1 in input list Using mkacisrmf...

Updating header of 198_bkg.pi with RESPFILE and ANCRFILE keywords. Updating header of 198.pi with BACKFILE keyword. Updating header of 198 grp.pi with BACKFILE keyword.

unix% ls 198.arf 198_bkg.rmf 198_asphist7.fits 198.corr.arf 198_bkg.arf 198_grp.pi 198_bkg_asphist7.fits 198.pi 198_bkg.pi 198.rmf

The CIAO Contributed Scripts - Jonathan McDowell

8th Chandra/CIAO Workshop, 6 August 2011

Parameters for /soft/ciao/contrib/param/specextract.par

Source event file(s) infile = Output directory path + root name for output files outroot = weight = yes Should response files be weighted? correct = noApply point source aperture correction to ARF? bkqfile = Background event file(s) Create background ARF and RMF? bkgresp = yes Source aspect solution or histogram file(s) asp = combine = noCombine output spectra and responses? pbkfile = pbkfile input to mkwarf mskfile input to mkwarf mskfile = (rmffile = CALDB) rmffile input for CALDB (ptype = PI) PI or PHA (grouptype = NUM CTS) Spectrum grouping type (same as grouptype in dmgroup) (binspec = 15)Spectrum grouping specification (NONE, 1:1024:10, etc) (bkg grouptype = NONE) Background spectrum grouping type (NONE, BIN, SNR, NUM BINS, NUM CTS, or ADAPTIVE) (bkg binspec =) Background spectrum grouping specification (NONE, 10, etc) (energy = 0.3:11.0:0.01)Energy grid (channel = 1:1024:1)RMF binning attributes (energy wmap = 300:2000)Energy range for (dmextract) WMAP input to mkacisrmf (binwmap = tdet=8)Binning factor for (dmextract) WMAP input to mkacisrmf (dafile = CALDB) dafile input to mkwarf (badpixfile =) Bad pixel file for the observation (clobber = no)OK to overwrite existing output file? (verbose = 1)Debug Level(0-5) (mode = ql)

specextract

Limitations and Special Cases:

- The script assumes that the exposure does not vary significantly across a point or extended source region. If the region spans multiple chips, it is assumed that the GTIs of each are similar enough that a single aspect histogram file applies to each.
- The script considers the brightest pixel in a source region to represent the position of the source region. This won't work correctly for saturated sources (e.g. when pileup is an issue).
- Sufficiently large input source extraction regions can cause several of the tools to run very slowly, especially when creating weighted responses.

Bonus script: combine_spectra

Sums multiple imaging source PHA spectra, and optionally, associated background PHA spectra and source and background ARF and RMF instrument responses.

```
unix% combine_spectra src_spectra="10289.pi,10290.pi, 10291.pi,10292.pi,10293.pi" outroot=ngc6300
```

Given a list of source spectra, the script reads the background spectrum and response file names from the header, assuming the necessary keywords are set. Otherwise, all the files may be specified in the parameter file.

If the combine parameter in specextract is set to yes, the combine_spectra script is invoked to sum the newly-created spectra and responses.

combine_spectra

unix% combine_spectra src_spectra="10289.pi,10290.pi,10291.pi,10292.pi,10293.pi" outroot=ngc6300

Running: combine spectra Version: 30 March 2011 Source PHA files to be combined: 10289.pi 10290.pi 10291.pi 10292.pi 10293.pi Checking headers of source PHA files for ARF files to combine. Found ARF file 10289.arf Found ARF file 10290.arf Found ARF file 10291.arf Found ARF file 10292.arf Found ARF file 10293.arf Checking headers of source PHA files for RMF files to combine. Found RMF file 10289.rmf Found RMF file 10290.rmf Found RMF file 10291.rmf Found RMF file 10292.rmf Found RMF file 10293.rmf (continued)

The CIAO Contributed Scripts - Jonathan McDowell

combine_spectra

(output continued)

Checking headers of source PHA files for background files to combine. Found background file 10289 bg.pi Found background file 10290 bg.pi Found background file 10291 bg.pi Found background file 10292 bg.pi Found background file 10293 bg.pi Checking headers of background PHA files for ARF files to combine. WARNING: The ANCRFILE header keyword value in 10289 bg.pi is 'none'; no ARF files to combine. WARNING: The ANCRFILE header keyword value in 10290 bg.pi is 'none'; no ARF files to combine. WARNING: The ANCRFILE header keyword value in 10291 bg.pi is 'none'; no ARF files to combine. WARNING: The ANCRFILE header keyword value in 10292 bg.pi is 'none'; no ARF files to combine. WARNING: The ANCRFILE header keyword value in 10293 bg.pi is 'none'; no ARF files to combine. Wrote file ngc6300 src.pi. Wrote file ngc6300 bkg.pi.

Wrote files ngc6300_src.arf and ngc6300_src.rmf.

combine_spectra

Parameters for /soft/ciao-4.3/contrib/param/combine spectra.par

src_spectra =
 outroot =
 (src_arfs =)
 (src_rmfs =)
 (bkg_spectra =)
 (bkg_arfs =)
 (bkg_rmfs =)
 (clobber = yes)
 (verbose = 0)
 (mode = ql)

Source PHA files to combine; enter list or '@stack'
Root name for output files
Source ARF files to combine; enter list or '@stack'
Background PHA files to combine; enter list or '@stack'
Background ARF files to combine; enter list or '@stack'
Background RMF files to combine; enter list or '@stack'
Background RMF files to combine; enter list or '@stack'
Dk to overwrite existing output file?
Debug Level(0-5)

combine_spectra

Limitations and Special Cases:

- Any grouping flags which may be present in input source or background PHA spectra will be ignored by the script.
- Combining background spectra with wildly varying spectral extraction region areas may yield misleading uncertainty estimates; i.e., some extractions will be over-represented while others will be under-represented.
- If the background rates contributing to a source are significantly different in the individual spectra to be combined, it is recommended that these spectra remain separate and be modeled simultaneously.

Otherwise, the modeling results of the combined source spectrum could be biased towards the observation(s) with the highest background rate(s).

The CIAO Contributed Scripts - Jonathan McDowell

What next?

8th Chandra/CIAO Workshop, 6 August 2011

Let's perform aperture photometry on the source in the 0.5-7 keV energy range.

What chip does the source fall on?

```
unix% dmstat "198.evt[sky=region(198.reg),energy=500:7000]
[cols ccd id]"
ccd id
    min:
                  7
                                  Q :
                                              1
                                              1
                  7
                                  (d :
    max:
                  7
   mean:
                  0
  sigma:
                  3689
    sum:
   qood:
                  527
   null:
                  0
```

The source is on chip 7.

What is the count rate?

```
unix% dmlist "198.evt[sky=region(198.reg),energy=500:7000]" counts
527
unix% dmlist "198.evt[sky=region(bg.reg),energy=500:7000]" counts
61
```

```
My region has radius of 10 pixels, which is \sim 5"
```


Where is it in MSC (off-axis-angle) coords? (The PSF size depends on this.)

unix% dmcoords 198.evt 198.asol x=4088 y=3982 option=sky verbose=1 | grep THETA THETA,PHI 56.5" 347.82 deg

What is the PSF fraction in my region? Note that 56.5" is 0.94'.

```
ln -s $CALDB/data/chandra/default/reef/hrmaD1996-12-20reefN0001.fits
psf.data
  python
  > import psf
  > pdata = psf.psfInit("psf.data")
  > f = psf.psfFrac(pdata, 1.0, 0.94, 347.8, 5.0)
  > print(f)
0.97990472442
```


We can check it at a couple of other energies too

```
> f=psf.psfFrac(pdata,0.5,0.94,347.8,5.0)
> print(f)
0.986305015765
```

```
> f=psf.psfFrac(pdata,7.0,0.94,347.8,5.0)
> print(f)
0.926977752619
```

Since most of our counts are near 1 keV, we will adopt f = 0.98 even though that's a bit low for the higher energies

What is the exposure time?

```
unix% dmlist 198.evt keys | grep LIVETIME
0118 LIVETIME 2483.1153432204 [s] Real8
Livetime
```


We can now run aprates:

```
unix% aprates n=527 m=61 A_s=314.1 A_b=1256.6 alpha=0.98
beta=0.0 T_s=2483.11 T_b=2483.11 E_b=1 E_s=1 eng_s=1 eng_b=1
flux_s=1 flux_b=1 conf=0.90 verbose=0 outfile=out2.par
```

```
unix% plist out2.par | grep src_rate
(src_rate = 0.210299)
(src_rate_err_lo = 0.194772)
(src_rate_err_up = 0.225921)
(src_rate_conf = 0.900024)
(src_rate_status = 0)
(src_rate_signif = 22.1634)
(src_rate_mode = 0.210299)
```

The estimated count rate is 0.210 ± 0.016 counts/s at a 90 percent confidence interval.

modelflux

This is a script which runs Sherpa without fitting, to estimate the flux corresponding to a given count rate.

Let's roughly estimate the flux our rate corresponds to, using a simple power law:

```
modelflux arf="198.corr.arf" rmf="198.rmf"
model="xsphabs.abs1*powlaw1d.p"
paramvals="abs1.nh=1.7;p.gamma=0.7" emin=0.5 emax=7.0
rate=0.21
Model fluxes:
Rate (0.5,7)= 0.21 count s^-1
Photon Flux (0.5,7)= 0.00061685 photon cm^-2 s^-1
Energy Flux (0.5,7)= 4.0753e-12 erg cm^-2 s^-1
```

Unfortunately this may be a factor of several off; for comparison a blackbody, which represents this data better.

modelflux

Using a blackbody:

```
modelflux arf="198.corr.arf" rmf="198.rmf"
model="xsphabs.abs1*xsbbody.b"
paramvals="abs1.nh=1.7;b.kT=0.5" emin=0.5 emax=7.0 rate=0.21
```

```
Model fluxes:
Rate (0.5,7) = 0.21 count s^-1
Photon Flux (0.5,7) = 0.00045321 photon cm^-2 s^-1
Energy Flux (0.5,7) = 1.7529e-12 erg cm^-2 s^-1
```


modelflux

And using a more detailed functional form obtained from a Sherpa fit, we get:

```
modelflux arf="198.corr.arf" rmf="198.rmf"
model="xsphabs.abs1*(xsvnei.v+xsbbody.b)"
paramvals="abs1.nh=1.7;v.kT=1.0;v.Tau=7.0e
+10;v.norm=0.0019;b.kT=0.5;b.norm=3.0e-5"
emin=0.3 emax=7.0 rate=0.21
```

```
Flux (0.5 - 7 \text{ keV}) = (1.46 + / - 0.11) \text{ e} - 12 \text{ erg/cm} * 2/\text{s}
```


eff2evt

How about a model independent flux?

The eff2evt tool estimates a flux per photon for each event of approximate energy E, given the observation livetime T, as

F = E * (1 / A(E)) * (1 / T) erg / cm * 2 / s

By summing these over all detected photons in an energy range we get the estimated total flux.

eff2evt

unix% eff2evt 198.evt"[sky=region(198.reg)]" 198.eevt
unix% eff2evt 198.evt"[sky=region(bg.reg)]" bg.eevt

unix% dmstat 198.eevt"[energy=500:7000][cols flux]" | grep sum sum: 1.5567785755e-12

unix% dmstat bg.eevt"[energy=500:7000][cols flux]" | grep sum sum: 1.6160426087e-13

So we calculate the background contribution as bg = (314.1 / 1256.6) 1.62e-13 = 0.04e-12 and hence the net flux is

net = 1.56e - 12 - 0.04 e - 12 = 1.52 e - 12

eff2evt

Correcting for the PSF by x 1/0.98: net,corr = 1.55 e-12 erg/cm**2/s

Scaling with the count rate errors from aprates:

F = 1.55 + / - 0.12 e - 12 erg/cm * * 2/s

in good agreement with the Sherpa model estimate.

The CIAO Contributed Scripts - Jonathan McDowell

Part 3: Contributed Tarfile Updates

8th Chandra/CIAO Workshop, 6 August 2011

Keeping Current

The contributed tarfile is updated on a regular basis to release new features and bug fixes. The version file is updated with each release:

unix% cat \$ASCDS_CONTRIB/VERSION.CIAO_scripts 07 Jul 2011

The release is announced in three places:

- CIAO News page (with RSS feed): http://cxc.harvard.edu/ciao/news.html
- chandra-users email list: http://cxc.harvard.edu/chandra-users/discussion_group.html
- Contributed tarfile webpage: http://cxc.harvard.edu/ciao/download/scripts/