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1. Introduction

The counts image of an extended X-ray source invariably contains instrumental artifacts which

complicate surface brightness measurements. These artifacts are caused by imperfections in the

mirror and the detector and are both energy and position dependent. Often, one would like to

generate an image in physical units (e.g. photon sec−1 cm−2 arcsec−2), with these artifacts removed.

A common approach is to divide the counts image by an exposure map to re-scale all parts of the

image to the same relative exposure.

Unfortunately, in the general case, no exposure map with this property exists. The reason is

that, because the effective area is energy dependent, the number of counts produced in a given broad

pulse-height band is not proportional to the incident flux in that band. Instead, an integral equation

relates the total counts produced in a given pulse-height bin to the incident source spectrum;

solution of this integral equation for point-source observations is the primary function of xspec

and sherpa.

The imaging case is further complicated by the need to account for the position-dependence of

the effective area. As with point-sources, an integral equation describes the relationship between

the counts image and the source surface-brightness distribution in a given energy band. In general,

simply dividing the counts image by an exposure map does not constitute a solution to this integral

equation and does not yield the true source surface brightness vs. position in the chosen band.

However, when the effective area is roughly constant within a given energy band, the relevant

integral equations may be greatly simplified, allowing one to divide by an exposure map to effectively

remove instrumental artifacts from a counts image within the specified band.

2. Definition of the Exposure Map

For an explicit first-principles derivation of the equations defining the ARF and the exposure

map, see Davis (2000). Here, we merely state the relevant results and discuss how they might be

used in the analysis of X-ray imaging data. After simplifying for the case when the mirror effective

area and point-spread function shape are slowly varying, the integral equation relating the counts

image to the source surface brightness distribution is

C(h, p̂) = τeff

∫
dλ E(h, λ, p̂)SF(λ, p̂) (1)
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where the integral extends over all wavelengths λ which contribute counts to pulse-height bin h.

In this expression, C(h, p̂) is the expected number of aspect-corrected counts with pulse-height h

attributed to sky position p̂, SF(λ, p̂) is the PSF-smeared source surface brightness at wavelength

λ and sky position p̂, and τeff is the effective exposure time. The quantity E(h, λ, p̂) is the exposure

map; from equation (1), it follows that E must have units of cm2 counts photon−1 (given SF∆λ in

photon sec−1 cm−2, τeff in seconds, and C in counts).

The exposure map for a given observation combines the effective area of the telescope and

detector with a map of the dwell time vs. sky position, accumulated by following the telescope

pointing motion during the observation. The effective area varies with position on the detector

and is also energy dependent. At a given energy, the effective area as a function of position on

the detector is called the instrument map. The map of dwell time vs. pointing direction, built

up by the telescope pointing motion, is called the aspect histogram. Combining the instrument

map with the aspect histogram, the exposure map is a map of the total exposure as a function of

position on the sky. In particular, note that the exposure map has units of Area (ignoring for the

moment the dimensionless ratio counts photon−1). Therefore, to convert a counts image to flux

units, the relevant quantity is the product (effective aperture Area)×(exposure Time) (see equation

(5) below).

To obtain an image with a statistically significant number of counts per pixel in the region of

interest, it is often necessary to sum over counts in a pulse-height interval (∆h). Summing equation

(1) over such an interval and taking care to extend the integral over the wavelength range (∆λ)

which contributes to (∆h), we obtain

C(∆h, p̂) = τeff

∫
λ∈∆λ

dλ E(∆h, λ, p̂)SF(λ, p̂) (2)

with the understanding that the pulse-height range ∆h is summed over, so that, e.g.

C(∆h, p̂) ≡
∑
h∈∆h

C(h, p̂). (3)

Note that the wavelength range ∆λ does not correspond exactly to the band width ∆h in PI

units. In particular, because of the finite energy resolution of the detector, ∆λ must extend over

a somewhat broader range than ∆h so that it can cover the entire range of λ which significantly

contributes to ∆h.

If we choose a wavelength range ∆λ over which E(∆h, λ, p̂) is relatively constant (see Figure

1), we can remove E from the integrand in equation (2) to obtain

C(∆h, p̂) ≈ τeffE(∆h, λ0, p̂)

∫
λ∈∆λ

dλSF(λ, p̂). (4)

Given a counts image for this band, C(∆h, p̂), we can divide by the corresponding exposure map,

E(∆h, λ0, p̂), to obtain an image, in physical units, of the PSF-smeared source integrated over the
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Fig. 1.— A typical effective area curve.

wavelength band ∆λ: ∫
λ∈∆λ

dλSF(λ, p̂) =
1

τeff
·
C(∆h, p̂)

E(∆h, λ0, p̂)
. (5)

We emphasize that equation (5) is valid only to the extent that the effective area is constant over

the wavelength range of interest (∆λ).

Rather than requiring that the effective area be constant over the entire wavelength range of

interest, we can account for some of the energy dependence by approximating the effective area

function with a number of piecewise-constant regions. Neglecting the p̂ dependence, we have

C(∆h) = τeff
∑
i

Ei

∫
∆λi

dλSF(λ) (6)

where Ei ≡ E(∆h, λi) is constant within each ∆λi. If we now define a set of weights

wi ≡

∫
∆λi
dλSF(λ)∫

∆λ
dλSF (λ)

(7)

where ∆λ =
∑
i
∆λi, we can define a weighted exposure map W ≡

∑
i
wiEi (mkinstmap allows

such weighting to be included). Dividing by this weighted exposure map we obtain a better estimate
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of the PSF-smeared source integrated over the broad wavelength band ∆λ so that

∫
∆λ

dλSF(λ) ≈
C(∆h)

τeffW
. (8)

Although the incident source spectrum is usually unknown, one can use a model spectrum to

compute approximate weights using equation (7).

To the extent that the weights wi accurately represent the shape of the incident spectrum

over the entire image and that the effective area function is piecewise constant over the wavelength

range of interest, one can use equation (8) to compute a surface brightness image spanning a

relatively broad wavelength range. However, we emphasize that by neglecting the p̂ dependence,

we have assumed that a single spectral shape applies to the entire image. If the shape of the

incident spectrum varies significantly across the image, e.g. so that a single set of weights does

not represent the incident spectrum over the entire image with sufficient accuracy, then it is not

possible to accurately compute the correct surface brightness at every point in the image by simply

dividing the counts image by a single exposure map.

To make this more precise, we examine the extent to which spectral variations or, equivalently,

errors in the spectrum model, produce errors in the derived flux. To simplify the notation, assume

τeff = 1 and ignore the ∆h and p̂ dependencies; similarly, ignore the dither motion, so that the

exposure map is essentially just the effective area curve, hence E(λ)→ A(λ). The incident source

spectrum may be written in the form s(λ) = s0(λ) + s1(λ), where s0(λ) is our approximation

of the incident spectrum and s1(λ) is the error term. In the limit of arbitrarily fine wavelength

subdivisions, the weighted exposure map has the form

W[s0] ≡

∫
dλ A(λ)s0(λ)∫
dλ s0(λ)

. (9)

From equation (8), dividing the counts image, C, by this weighted exposure map, W[s0], gives the

correct flux if ∫
dλ s(λ) =

1

W[s0]

∫
dλ A(λ)s(λ) (10)

By substituting s(λ) = s0(λ) + s1(λ) in this expression and using the definition of W[s0], it follows

that we can obtain the correct flux if W[s0] =W[s1] = constant.

Figure 2 shows W[s] for two common types of smoothly varying spectra. Because W[s] is

slowly varying for these spectra, an accurate model for the incident spectrum should lead to cor-

respondingly small errors in the computed flux. Figures 2a and 2b can be used to examine the

accuracy of source fluxes computed using weighted exposure maps for both thermal and power-law

sources. For example, if an exposure map weighted for a thermal spectrum with kT = 3 keV is

applied to an image for which the true incident spectrum is kT = 3.5 keV, Figure 2a indicates that

the error in the weighted exposure map will be only a few percent, giving a similarly small error in

the computed flux.
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On the other hand, if the image contains significant spectral variations, the resulting systematic

errors may range from a few percent to nearly a factor of two, depending on the chosen bandpass ∆λ,

even for a weighted exposure map created with arbitrarily small energy bins. In such a situation,

no single exposure map can apply to the entire image. For example, suppose we have an image

of a galaxy cluster where the outer parts correspond to kT = 6 keV but the core is at 2 keV. In

the 0.5-10 keV band, if we compute an exposure map weighted for a temperature of kT = 6 keV,

Figure 2a indicates that the flux in the core would be overestimated by about 40%. Instead, if we

restrict the bandpass to the 2.5-5 keV band where the response is nearly flat, the systematic flux

error should be quite small over most of the image. Note that because the cosmic X-ray background

spectrum is quite different from the thermal X-ray spectrum of the cluster, the flux computed for

the cluster-free areas of the image may have significant systematic errors. For a more detailed

example based on a marx simulation using thermal spectra, see §4.
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Fig. 2.— Dependence of weighted exposure map on spectral shape for (a) exponential and (b)

power-law spectra. Each figure shows results for four bandpasses, ∆λ; 0.5-10 keV (open circles),

0.5-5 keV (filled diamonds), 5-10 keV (open squares), 2.5-5 keV (filled circles).
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3. Example 1: Monochromatic Sources

3.1. Source Properties

As an illustration of the problems which arise when the effective area varies significantly with

energy, consider the problem of exposure correction within the relatively narrow energy range 1.4-

2.7 keV which lies near the peak of the effective area curve and which also spans the Iridium edge

at 2 keV. To simplify the interpretation of the image, consider an extended source which consists of

two uniform surface brightness disks of 1 arcmin radius, with their centers spaced 1 arcmin apart

such that the disks overlap. Each disk separately contributes a monochromatic flux of 0.1 photon

sec−1cm−2, one at 1.47 keV (Magnesium), the other at 2.61 keV (Sulfur). It follows that, integrated

over the energy range 1.4-2.7 keV, the surface brightness where the disks overlap should be exactly

twice the surface brightness in the monochromatic regions.

To test the accuracy of the exposure correction, we will compare our results with the known

surface brightness in each part of the source image. Each disk contributes a monochromatic flux

F (λ) which is distributed uniformly over an area of angular size A, so that the monochromatic

surface brightness is S(λ) = F (λ)/A, with A = πR2 and R = 60 arcsec. The surface brightness

in each region is then S = 8.84 × 10−6 photon sec−1cm−2arcsec−2. and twice that, or 1.77 × 10−5

photon sec−1cm−2arcsec−2, in the overlap region.

3.2. Observation and Analysis

Using marx 3.0, we generated a realistic simulation of a Chandra acis-s3 imaging observation

of this idealized source. See the Appendix for details of the simulation and data analysis. To

generate an exposure map for the 1.4-2.7 keV image of this source, we can use an exposure map for

a single representative energy or we can use spectral weights chosen according to a model for the

source spectrum. We examine four likely choices: three monochromatic exposure maps, computed

at 1.47 keV, 2.61 keV and at the average energy, 2.0 keV and a weighted exposure map based on

the known input spectrum, with equal weights at 1.47 keV and 2.61 keV.

Figure 3 shows the results of applying these four exposure maps to the counts image using

equation (5). From the figure, it is clear that none of the exposure maps gives the correct result

for the entire image. The exposure map computed for the intermediate photon energy produces

significant surface brightness errors in all parts of the image. Where there is an exact match with

the incident source spectrum, the monochromatic exposure maps work well, but in the overlap

region, they produce large errors. Although the weighted map based on the known input spectrum

produces the correct answer in the overlap region, it gives the wrong surface brightness in each of

the monochromatic regions.

This simple example illustrates two important points. First, even with perfect knowledge of

the input spectrum, it may not be possible to compute the incident surface brightness at every point
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Fig. 3.— Surface brightness profiles generated using four different exposure maps. Straight lines

(black) mark the correct surface brightness values in each source region.

in an image using a single exposure map when the incident source spectrum is position dependent.

Second, even when the source spectrum is independent of position, an energy-dependent effective

area can combine with errors in the presumed form of the incident spectrum to cause significant

errors in the resulting surface brightness image. It follows that one should take care to apply

exposure maps only to energy bands for which the effective area is relatively constant and that

one should be especially careful when interpreting images in which the source spectrum may be

position-dependent.



– 9 –

4. Example 2: Thermal Sources

4.1. Source Properties

To examine the more realistic case of sources with thermal spectra, we again consider a sim-

ulation consisting of two uniform surface brightness disks, but with each emitting an unabsorbed,

solar-abundance, thermal X-ray spectrum. Each disk contributes an integrated flux of 0.1 photon

sec−1cm−2 (0.18-10 keV); one disk has kT = 2 keV and the other has kT = 6 keV. To illustrate

the effect of the energy-dependence of the effective area, we consider two energy bands: the 2.5-5.0

keV band for which the effective area curve is roughly constant, and the 1.0-5.0 keV band which

includes the Iridium edge at 2 keV. The surface brightness values for the various source regions are

given in Table 1.

4.2. Observation and Analysis

Because the effective area is only weakly energy dependent between 2.5-5.0 keV, we expect to

obtain fairly accurate surface brightness values in this band using a monochromatic exposure map

for E=3.75 keV. Indeed, the lower curve (# 4) in Figure 4 shows that this exposure map gives

the correct result. However, because the effective area has rather strong energy dependence in the

broader energy band between 1.0-5.0 keV, we do not expect a monochromatic exposure map to

give the correct surface brightness in all parts of an image in this band. The upper curve (# 1)

in Figure 4 shows that a monochromatic exposure map leads to significant errors in the computed

surface brightness (∼ 50%).

We also examine two weighted exposure maps for the 1.0-5.0 keV band, one for each com-

ponent in the thermal spectrum. The weights computed using equation (7) are given in Table 2.

Examination of the two middle curves (# 2 and # 3) of Figure 4 shows that each of these weighted

exposure maps yields surface brightness values with errors . 10%.

Table 1

Incident Surface Brightness

Region Sa (2.5-5.0 keV) Sa (1.0-5.0 keV)

“2 keV” 0.45 3.20

“6 keV” 0.94 3.17

“Overlap” 1.39 6.37
a Units 10−6 photon sec−1 cm−2 arcsec−2

Table 2

Exposure Map Weights

E (keV) kT=2 keV kT=6 keV

1.3 0.626 0.418

1.8 0.123 0.151

2.1 0.056 0.062

3.6 0.195 0.368

Given the results of the earlier examples and the spectral variation present in this image, the

comparative accuracy of this last result may seem somewhat surprising. However, because the

incident spectra are relatively smooth and have similar shapes, the weighted exposure map and,

therefore, the computed flux is relatively insensitive to the exact spectral shape within the chosen
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band (see equation 9 and e.g. the corresponding curve in Figure 2a).

Fig. 4.— Surface brightness profiles for 2 different energy bands computed using monochromatic

and weighted exposure maps. The top 3 curves give the surface brightness in the 1.0-5.0 keV band

while the bottom curve gives the surface brightness in the 2.5-5.0 keV band where the effective

area is roughly constant. Straight lines (black) mark the correct surface brightness values in each

source region for each energy band.
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5. Summary

Surface brightness images generated by dividing a counts image by an exposure map are likely

to contain significant systematic errors unless

1. the effective area is approximately constant over the specified energy band,

2. the incident source spectrum varies slowly across the specified energy band (e.g. thermal,

power-law),

3. the contribution to the exposure map from each piecewise-constant band is weighted using

an accurate model for the incident spectrum (e.g. according to equation 7), and

4. spectral variations in the image are sufficiently small that a single spectrummodel is applicable

to the entire image.

6. Appendix

To generate the marx simulation, we ran the following programs:

• marx run twice, one for each disk (SourceType="DISK").

• marxcat to combine the two disk simulations

• marx2fits to create the input FITS event list

• marxasp to create the aspect solution

We then analyzed these simulated data using the standard Ciao tools:

• asp calc offsets, asp apply sim, asphist to generate the aspect histogram giving the

pointing duration for each sky position.

• mkinstmap to generate the instrument maps

• mkexpmap to generate the exposure maps

• dmcopy to create the counts image

• dmimgcalc to divide the exposure map into the counts image
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