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A brief history of XRB jets

They predicted Xray jets?
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Fig. 9. The outflow of the matter from the collapsar at the supercritical
regime of accretion

(Shakura & Sunyaev 1973)
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A brief history of XRB jets

They predicted Xray jets? 95433: first XRB jet
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FiG. 2.— VLA radic contour maps of SS 433 at 4885 MHz for r=TD 2,444,215, 2,444,308, 2, and 2,444,111 are displayed in a

form where the unresolved core radio source (small +) is removed, and the proper motion paths of material ejected at 20 day intervals with

- L the parameters of Table 1 are drawn with filled circles. The contour levels correspond to 90, 80, 70, 60, 50, 40. 30, 20, 15, 10, 5, and —5% of

Fig. 9. The outflow of the matter from the collapsar at the supercritical the peak flux density values of 0.070, 0.030, 0.029, and 0.032 Jy per beam area for JD 2,444,215, 2,444,306, 2,444,306, and 2,444,411 maps,
regime of accretion respectively.

(Shakura & Sunyaev 1973) (Hjellming & Johnston 1981)
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A brief history of XRB jets
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(Mirabel et al. 92,98)
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Fundamental Plane of Black Hole Accretion:
XRBs < AGN

A GBH (10 M)
Sgr A* (10° M,)
o LLAGN (10"°M,)
o FRI(10°° M,
m SDSS HBLs (10°° M,)

35
|Og I—radio (erg 3_1)

(SM ea. 2003; Heinz & Sunyaev 2003; Merloni, Heinz & diMatteo 2003; Falcke, Kording, SM 2004;
SM 2005; Koérding et al. 20065 Plotkin, SM, Kelly, K6rding & Anderson 2012)
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Black hole jets are major players in the universe

GALAXY EVOLUTION/

AGN FEEDBACK

- -

IONIZATION OF
SURROUNDING GAS

(Pakull et al. 2010) 10 arcsec

HIGH-ENERGY PARTICLE
ACCELERATION

Cosmological
Simulations:

(Di Matteo et al. 2011)
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Jet power: two primary theoretical scenarios

Blandford-Znajek Blandford-Payne
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Jet power: two primary theoretical scenarios

Blandford-Znajek Blandford-Payne

(¢861 dukeq » projpuelq ‘/L61 yoleuz x projpuery)

» Spin energy extracted » Plasma accelerated up
from BH via magnetic field lines from disk
fields (**bead on wire”’)
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Jet power: two primary theoretical scenarios

Blandford-Znajek Blandford-Payne
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» Spin energy extracted » Plasma accelerated up
from BH via magnetic field lines from disk
fields (**bead on wire”’)

» Jets initiated as e e pairs, » Jets loaded with neutral
Poynting lux dominated matter (1ons, e's) from disk
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Jet power: dependence on spn

Blandford-Payne-like Blandford-Znajek-like

BP jet power vs. black hole spin

Analytic solutions:
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(Mezrer 2001, Meier 2012) (Tchekhovskoy, Narayan & McKinney 2010)
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Jet power; RL/RQdichotomy in AGN populations?

(Sikora, Stawarz & Lasota 2007)

Monday, 16 July 12



Jet power; RL/RQdichotomy in AGN populations?

(Sikora, Stawarz & Lasota 2007)
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Problem: there are RL/RQ states seen in single XRBs!
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(spectral slope, soft=steep, hard=flat)
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Problem: there are RL/RQ states seen in single XRBs!

? f Hard state:

- - ,7‘ ['>2 _ .
HIM/SIM transition | gy = steady jets
= ballistic jets g

Soft Intermediate

Intermediate

Jet line }

Hard
Intermediate

Soft state: Soft Hard “*

0 ° Spectral Hardness
no |GiS? WlndS (spectral slope, soft=steep, hard=flat)

Monday, 16 July 12



Problem: there are RL/RQ states seen in single XRBs!

10°2

V404 Cyg Y XTEN752-223
GX3394 (o} Swift)1753.5-0127
H1743-322 ® GRS1758-258
7 MAXI1659-152 8 kpe ® XTEJI8594226
MAXIJ1659-152 4 kpe ®  4U1908+094
GROJO422+32 ¥ GRS1915+105
XTEN118+480 qU1543-47
GS1354-64 ADE20-00
GS1354-64 V4641 Sgr
XTEN650-500 Index«1.4
GROJ165540 Index~056
XTEN720-318
1£1740.7-2942

(Jonker et al. 2012, and see also Coriat et
al. 2011, Gallo et al. 2012, Ratti et al. 2012)
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So which power should we use fo compare to spin??

? f Hard state:
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Compact jets: flat spectra up to a break (t: >1-0)
Fy

Vbreak: = (rh/M)2/3 MmN 1S

1%
(Blandford & Konigl 1979, Falcke & Biermann 1995, SM et al. 2003, Heinz & Sunyaev 2003)
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Compact jets: flat spectra up to a break (t: >1—-0)
Fy

Vbreak: = (m/M)2/3 MmN S

AGN:

(mmfsubmim)

1%
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Compact jets: flat spectra up to a break (t: >1—-0)
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Compact jets: flat spectra up to a break (t: >1—-0)
Fy

Vbreak: = (r'n/M)2/3 MmN S

AGN: XRBs:
(mmfsubmim) IR/opt

S JVFv peaks
here!
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(Blandford & Konigl 1979, Falcke & Biermann 1995, SM et al. 2003, Heinz & Sunyaev 2003)
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Limits on jet contribution to XRB broadband spectra and total power
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* A jet spectral break in the IR translates to L;aa ~ 107
erg/s, ~ ()(0.001Lgaq) for a ' 10Mc black hole; not

insignificant!

Monday, 16 July 12



Limits on jet contribution to XRB broadband spectra and total power

* A jet spectral break in the IR translates to L;aa ~ 107
erg/s, ~ ()(0.001Lgaq) for a ' 10Mc black hole; not

insignificant!

% X-ray synchrotron from XRB'jets'would require
presence of strongish'shocks and significant kinetic
power ™ hints at unseen power reserves

Monday, 16 July 12



Limits on jet contribution to XRB broadband spectra and total power

* A jet spectral break in the IR translates to L;aa ~ 107
erg/s, ~ ()(0.001Lgaq) for a ' 10Mc black hole; not

insignificant!

% X-ray synchrotron from XRB'jets'would require
presence of strongish'shocks and significant kinetic
power ™ hints at unseen power reserves

*x Recent y-ray Hlares in Cyg X-3 also suggest hadronic
(proton/ion) acceleration in XRBs; all of which ups the
“hidden” energy budget; from heavy particles

Monday, 16 July 12



Limits on jet contribution to XRB broadband spectra and total power

* A jet spectral break in the IR translates to L;aa ~ 107
erg/s, ~ ()(0.001Lgaq) for a ' 10Mc black hole; not

insignificant!

* X-ray synchrotron from XRB'jets'would require
presence of strongish'shocks and significant kinetic
power ™ hints at unseen power reserves

*x Recent y-ray Hlares in Cyg X-3 also suggest hadronic
(proton/ion) acceleration in XRBs; all of which ups the
“hidden” energy budget; from heavy particles

x Even 10% *‘contamination’’ of hard state X-rays changes
the entire paradigm of thermal Comptonization!!
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First application to XRB: XTE J1118+480

| | | | | |
- (Markoff,Falcke & Fender, A&AL, 2001)
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(SM ea. 01, SM ea. 03, SM, Nowak & Wilms 05,
Migliari ea. 07, Gallo ea. 07, Maitra ea. 09)
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XTE J1550-564: jet synchrotron fractions during outhurst
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(Russell ea. 2010)
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How can we connect this jet output fo spin in XRBs?

* XRBs offer two methods: disk continuum (only possible for
XRBs!) and relativistic Fe Kq line/reflection fitting (AGN too)

* For many sources only oneis'possible;and there is not
always agreement for sources with:bothi(e.g. 4U1543-47):

4U 1543-47

normalized counts/sec/keV
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(Miller ea. 2009, Shafee ea. 2007 '™ Dovciak ea 2004; Li ea. 2005; Davis ea. 2006; Brennemen & Reynolds 2006, +++)



Putting it all together: forays into spin vs jet power

* Two groups are looking at this, without really converging
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Putting it all together: forays into spin vs jet power

| Hard state jets : radio power

Log(10) radio luminosity
Hard state radio normalisation

34 36 : 0. . 0.4 0.6

Log(10) X-ray luminosity Spin measurement (disc fits)

— can fit normalisation of a
- function with the global slope
(+0.6)

/
/ ”

P .
- =

Log(10) radio luminosity
Hard state radio normalisation

a1 36 3 o 0.2 0.4 0.6 0.8

Log(10) X-ray luminosity Spin measurement (reflection fits)

Fender, Gallo & Russell (2010)
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Putting it all together: forays into spin vs jet power

* Two groups are looking at this, without yet converging

Monday, 16 July 12

D GHz

(Narayan & McClintock 2012)
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(Russell, Gallo & Fender, in prep.)




Open issues I: any indication of BZ vs BP for XRBs?

(Migliari ea 2006, Heinz ea 2007, Tudose ea. 2008, Soleri ea. 2009a, Soleri ea. 2009b,
Sell ea. 2010, Miller-Jones et al. 2012)
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Open issues I: any indication of BZ vs BP for XRBs?

% Cir X-1 1s a neutron star XRB and thus i1t BZ is the
dominant force powerlng jets it should have weaker jets

than
— Tod ugh
(&{0)0040 o g ; :
Optically @ck Optically ﬂ'ﬂ? disk +
vav, X-ra ] (faint) donor star power to
be 10 _______________________ disk + coronafjet? le XRBs
* But 4T | a ak was
explic |
— Defin able X-ray
lumai

10% 10 10%'° 10! 10'® 10 10'* 100 10'® 107 101® 10!® 10*C
Frequency (Hz)

(Migliari ea 2006, Heinz ea 2007, Tudose ea. 2008, Soleri ea. 2009a, Soleri ea. 2009b,
Sell ea. 2010, Miller-Jones et al. 2012)
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Open issues I: any indication of BZ vs BP for XRBs?

* Cir X-1 1s a neutron star XRB and thus it BZ is the
dominant force powering jets it should have weaker jets

than BH XRBs, and yet...

— To date it has the fastest jet measured i an XRB (though
compact jet recently observed is slower)

— X-rays detected from impact with' ISM. constrain jet power to
be 103>-107 erg/s, similar to what we find for black hole XRBs

* But4U 0614+091 is alsoa NS XRB, whose jet break was
explicitly detected with Spitzer

— Definitely lower power than BH XRBs, for a comparable X-ray

luminosity

— Implies weaker jets, exactly as one might expect for a “missing”

ingredient of Blandford & Znajek power

(Migliari ea 2006, Heinz ea 2007, Tudose ea. 2008, Soleri ea. 2009a, Soleri ea. 2009b,
Sell ea. 2010, Miller-Jones et al. 2012)
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Open Issues Il ™ Do we really need spin power?

BLRGs

ALQs

SGs & LINERs|
v FRIRGs
* PGQs

3
log(#)

Core radio powers + mass corrections

(Sikora, Stawarz & Lasota 2007; )
Broderick & Fender 2011) e BRG]

O  RLQs

$ SGs & LINERs
v FRIRGs

* PGQs

-6
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Open Issues IIl ™ we still don’t understand jets!

Matter Density

]eﬁs(g/cm3)15 ~ No Cooling » Cooling

l.e-16 -
l.e-17 -
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l.e-19 JIII

(Rg)o
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radius (Rg)

log(EEM,jet [erg])

w
©

(Dibi, Drappeau et al. 2012, and many others: Krolik++, Koide++, Gammie++, McKinney++,
Tchekhovskoy++, Nakamura++, etc.)
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Open Issues IV m» MCG 6-30-15

* The most secure spin measured (in an AGN) is almost
maximal, yet associated with a Radio Quiet object??
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(Wilms et al. 2001)
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Outlook: Our simplest scaling models may be too simplistic
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(Russell ea. in prep., SM ea. in prep)



Outlook: Our simplest scaling models may be too simplistic
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(Russell ea. in prep., SM ea. in prep)
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New spin probes using event horizon physics (AGN)
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(Drappeau, Dibi, Dexter, SM & Fragile, in prep.)
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Using the environment as a “calorimeter”

v (yg X-1 bubbles imply power in jets <100x greater than Liudio fand see
Paul Sell’s talk!], other nebulae are starting fo be detected

il | : : ' ' : v 1
I N ' ~
Bremsstrahlung Bow shock front

o l g

Synchrotro i

. lo
w, o
¢ Collimated.jet 1

; . : ; E. ' . - ‘ s Qu -i.",“v‘s L e L s | e

(Gallo et al. 2005, Russell et al. 2006)




Summary & Qutlook

—

Monday, 16 July 12



Summary & Qutlook

—

Monday, 16 July 12



Summary & OQutlook

¥* Jets are the vehicles for transporting black hole-released accretion
power, important for understanding relation to event horizon physics

¥* Jets play a significant role in the power output of XRBs, increasingly
dominating as luminosity decreases

% XRBs are key for jet studies: offer both real-time evolution and two
ways to measure spin, results likely to apply also to AGN ’

¥ Jet power vs. spin: it’s complicated! Clear relation predicted by
theory but not so obvious from data so far, very important to settle!

% XRB jets are high-energy emitters: X-ray and y-ray flares, likely also
CR accelerators, increases “hidden” power requirements

.‘;
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Summary & OQutlook

¥* Jets are the vehicles for transporting black hole-released accretion
power, important for understanding relation to event horizon physics

¥ Jets play a significant role in the power output of XRBs, increasingly
dominating as luminosity decreases

% XRBs are key for jet studies: offer both real-time evolution and two
ways to measure spin, results likely to apply also to AGN '

¥ Jet power vs. spin: it’s complicated! Clear relation predicted by
theory but not so obvious from data so far, very important to settle!

% XRB jets are high-energy emitters: X-ray and y-ray flares, likely also
CR accelerators, increases “hidden’’ power requirements

¥ Outloo@

mw Improve odels/simulations: need to “capture’ jet physics better

> New fﬁlities: ALMA, “transient factories”:LOFAR/MeerKAT/
ASKAP/LSST (but sadly, no RXTE), NuSTAR, an X-ray polarimeter??

mw XRB jet feedback: 1onization, Galactic/low-energy cosmic rays "
rather unexplored territory and transient monitoring studies pave the
way towards understanding the effect of the entire population
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Fundamental plane of BH accretion
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Fundamental plane of BH accretion
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Fundamental plane of BH accretion
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Fundamental plane of BH accretion
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Scatter from error in masses, or by including
Seyterts? M-o sources only:

| | |

29.2 31.5 33.8
0-67|09(LX—Ray [ergs S_1] )+O78|09(M [MSoIar] )

(Gultekin et al. 2009, King et al. 2011)
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