

Investigating the nature of the brightest ULXs

Marianne Heida
Peter Jonker, Manuel Torres
Chandra workshop 2012

Netherlands Institute for Space Research

Why we study ULXs

 Most ULXs are probably stellar mass or massive stellar black holes.

- The brightest ULXs may host intermediate mass black holes.
- Some of them may be recoiling supermassive black holes.

ESO 243-49 HLX-I, a candidate intermediate mass black hole

Intermediate mass black holes

Distribution of black hole masses; figure courtesy of A. Merloni

Simulation of MGGII, a compact cluster in M82 (Portegies Zwart et al. 2004)

Recoiling SMBHs

Simulation of a galaxy merger (Mayer et al. 2010). Numerical simulations show that merging black holes can be ejected from their host nucleus.

Galaxies grow through mergers: IHST image of merging galaxies NGC 2207 and IC 2163

Our method

- With optical spectra we can distinguish background AGN, quasars and SN IIn from 'real' ULXs.
- We observed 5 ULXs with bright optical counterparts with VLT/FORS 2 and found 4 background objects and one ULX embedded in an HII region.

HST image of a spiral galaxy with the Chandra position of a bright ULX (Jonker et al. 2010). It could be an IMBH, recoiling SMBH, or a SN IIn.

AM 0644-741

The Hubble Space Telescope image of AM 0644-741, a ring galaxy at a distance of 87 Mpc (redshift ≈ 0.02). It contains an X-ray source that would be a ULX if it is associated with the galaxy. The X-ray source has a bright optical counterpart.

AM 0644-741

The *Chandra* position of the ULX overplotted on the HST image.

The spectrum of the optical counterpart taken with the FORS2 spectrograph at the VLT. The 'ULX' turns out to be a quasar at redshift ≈ 1.4 .

ESO 306-3

ESO 306-3

Figure adapted from Ho 2010

Conclusions

- The brightest ULXs may host intermediate mass black holes and/or recoiling supermassive black holes. With optical spectra we can learn more about the nature of these sources.
- Optical spectra can also help us remove contaminants, like the quasar in AM 0644-741.
- We detect narrow emission lines and strong forbidden lines from the region around the ULX in ESO 306-3.
 This is probably a ULX embedded in an HII region.