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Outline

• Solutions for static cavities

• Self similarly and quasi statically expanding 
cavities

• Formation of reconnection layer and 
cosmic ray acceleration
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• We start from static solutions of the Grad-Shafranov equation (Shafranov 
1966) 
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constant so that the pressure at its minimum inside the
cavity to be zero, i.e. the β ≈ 1 case we have also tested
cases where the dip in pressure inside the cavity is a frac-
tion of the external pressure and we have found that the
rotation measure is very similar to that of a spheromak
configuration embedded in a uniform density and pres-
sure environment.

We have studied three viewing angles with respect to
the axis of the magnetic field. In the first case we have
an equatorial view, the axis is perpendicular to the line
of sight; in the second one the axis is tilted, the angle
between the line of sight and the cavity axis π/2; and in
the third case, the polar view, the axis points towards
the observer, Figs. (10) and (11).

Fig. 10.— The rotation measure for three models of cavities for
two viewing angles, the first row is for the case where the line of
sight is perpendicular to the axis of the system, whereas the second
is for systems where the line of sight forms an angle of π/4 with the
axis. The first column corresponds to the case where the minimum
of pressure in the system is equal to zero. The second column is the
system corresponds to the case where the minimum of the pressure
of the system at the minimum is half of the ambient pressure. The
third column is a spheromak filled with gas of constant pressure.

5.2. Synchrotron emission and polarization
If the cavity contains relativistic electrons, the pres-

ence of the magnetic field will lead to a polarized syn-
chrotron emission from the cavity. The intensity of the
synchrotron radiation depends both on the magnetic field
and the density of the electrons. We assume that the den-
sity of the electrons is related to the pressure we have
evaluated by a relation of γ = 4/3, as they are relativis-
tic. The magnetic field is well defined by the solution we
have found. Again we face the same uncertainties about
the minimum pressure in the cavity, which we now con-
sider to be equal to zero. We find that this structure
produces synchrotron radiation. The apparent profile of
the synchrotron radiation depends on the orientation of
the cavity with respect to the observer, Fig. (12).

5.3. Synthetic X-ray images
Observations of AGNs have revealed buoyant bubbles

as depressions in the X-ray surface brightness. Following
Dong & Stone (2009) we evaluate the X-ray profile of the
cavities. We assume that the X-ray emissivity of such a
system is proportional to Ex ∼ ρ2T 1/2, applying an adi-
abatic relation with an index γ = 4/3 as we have done
in the rotation measure we find Ex ∼ p(3+γ)/(2γ). Then

Fig. 11.— The rotation measure for the case where the line
of sight is along the axis of the system. In this case the rotation
measure is radially symmetric, thus we plot a slice. The squares
correspond to a solution with ambient pressure such as to go to zero
at the minimum inside the cavity. The asterisks correspond to a
solution with an ambient pressure twice as much as the previous
case. Finally the solid line is the rotation measure for a spheromak
embedded in a constant pressure environment.

Fig. 12.— First Row: The intensity of the synchrotron emission
of the system for a system where the line of sight and the axis of
the cavity form an angle of π/2, π/4 and 0 from left to right respec-
tively. Brighter areas have greater emissivity. Second Row: The
polarization of the synchrotron emission again for angles of π/2,
π/4 and 0, the length of the lines is proportional to the polarization
of the radiation.

we integrate Ex along the line of sight, taking into ac-
count the fact that the pressure in the external medium
is constant and equal to p0. Following this process we
have constructed synthetic X-ray images for three differ-
ent orientations so that the axis and line of sight have
an angle of π/2, π/4 and 0, Fig. (13). We remark that
the shapes of the cavities vary from elliptical to spherical
depending on the orientation, although their boundaries
are always spherical.

6. DISCUSSION

The X-ray cavities appear as areas of lower X-ray emis-
sion in the intracluster medium, and they originate from
AGN jets. Purely hydrodynamical simulations in gen-
eral predict terminating shocks which are not observed in
these systems, in addition they are vulnerable to instabil-
ities and demonstrate ripples near their edges (Reynolds
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Conclusions

• We have found stable, analytical solutions for magnetic cavities

• Their evolution can be traced by quasi-static evolution, simulation is 
essential however

• They provide the essential potential for UHECR acceleration if we consider 
one of the known mechanisms

• When reconnection layers form we break the initial assumption of ideal-
MHD, formally we cannot predict the next step of evolution, but we do not 
expect destruction of the cavity


