

Constraining AGN Properties in Recently Quenched Galaxies with Low-Count Chandra Observations

Lauranne Lanz¹, Katherine Alatalo², Kate Rowlands^{2,3}, K. Decker French⁴,

Sofia Stepanoff^{1,5}, Louis Miller¹, Dean Klunk^{1, 6}, Joe Petrecca¹

¹TCNJ, ² Space Telescope Science Institute, ³ John Hopkins University, ⁴ U. of Illinois, Urbana-Champaign, ⁵ Georgia Tech, ⁶Hampton University

27in telescope of lowest redshift subset (z<0.02) to check whether regions not covered by SDSS fiber also show optical colors consistent with post-starburst population. Circle is 20" overlaid on a 60 min observation of SPOG264. Inset in lower left shows SDSS image of this galaxy.

Work by Dean Klunk, being continued by **Emily Harms**

Chandra Observations

46 SPOGs have Chandra observations: 12 targeted/analyzed in Lanz et al. (2022) 2 others targeted; 32 serendipitously observed

Code development and revision led by undergraduates Sofia Stepanoff and Joe Petrecca. Testing led by undergraduate Dean Klunk.

Pros: provides individualized constraints in 2-D parameter space, applicable to other models (e.g., APEC), adjustable range, number of models, and statistical power (based on number of mock spectra)

Limitations: can only rule *out* models based on statistical likelihood, not compare which of two good models is better

Results

Frequency of X-ray nuclear Emission

When 1 or more photons is measured in a 2" aperture centered on the post-starburst galaxy, its significance is determined based on the expected background emission in that aperture. Background emission primarily depends on the exposure length and detector chip.

Nature of X-ray Emission

Significance	Lanz et al. (2022)		New A	rchival	Total	
above Bkg	Number	Percent	Number	Percent	Number	Percent
≥99%	7	58%	12	35%	19	41%
90% - 99% (Marginal)	2	17%	3	9%	5	11%
≥ 90%	9	75%	15	44%	24	52%
<90% (1-2 photons)	3	25%	3	9%	6	13%
No photons	0	0%	16	47%	16	35%

The Lanz et al. (2022) subset was selected from the subset of SPOGs observed with CARMA and IRAM, requiring a FIRST and WISE counterpart as well as CO(1-0) detection. While the detection rate of nuclear X-ray emission is lower in the serendipitous survey, the frequency of nuclear X-ray emission is still elevated.

Comparison of Forward Modeling and Spectral Fit

Fig. 5: Forward modeling results for SPOG105, with 110 photons. The red marker in panel e shows the results of fitting the spectrum with an absorbed power-law, which found consistent results. We have likewise seen consistent results for SPOGs 157 and 253 (10, 6 Chandra photons) and deeper XMM spectra.

Fig. 6: Constraints on luminosities for these galaxies. Lanz et al. (2022) subset: Forward Modeling PL/APEC, and 1-2 photons

New archival sources: Spectral fits, Forward Modeling PL/APEC, 1-2 photons, and no photons

High frequency of activity suggests transition process feeds the SMBH. Low luminosities, however, indicate that AGN most likely at best prevent resurgence of star formation rather than driving the quenching.

Other applications: investigating background source potential for point sources in HCG57

Number of 0.5-8 keV Photons Fig. 4: Most observations are short (under 10 ks) and most have 0-2 photons. Two sources (SPOGs 105 and 111) have more than 100 photons, enough for a spectral fit.

Data collection and early analysis led by undergraduates Louis Miller

References and Acknowledgments

Alatalo, A. et al. (2016), ApJS, 224, 38 Goto, T. (2007), MNRAS, 381, 187 Lanz, L. et al. (2019), ApJ, 870, 26 Lanz, L. et al. (2022), ApJ, 935, 29 O'Sullivan, E. et al. (2024), submitted to ApJ

LL acknowledge support from NASA grants 80NSSC20K0050, 80NSSC22K0798, and G02-21107X. We also acknowledge use of the ESLA high performance computing cluster at TCNJ, funded in part under NSF grant numbers OAC -1826915 and OAC - 2320244.

Declination 22:00:00.0

Zabludoff, A. et al. (1996), ApJ, 466, 104

	Source	net counts	${ m L}_{0.5-7 keV}$	$\log(N_{H,FM})$	kT_{FM}	$L_{0.5-7keV,FM}$	Absorbed power-laws consistent with sources: 1-3, 5-7, 14
		(0.5-7 keV)	$(10^{40} { m ~erg~s^{-1}})$	(cm^{-2})	(keV)	$(10^{40} { m erg s}^{-1})$	Higher absorption of 1, 3, 5 and 6 may suggest
	$on \ S3$						background AGN rather than associated LILX
	1	$79.4{\pm}10.1$	1.14 ± 0.14	$22{\pm}0.2$	-	$2.19\substack{+0.57 \\ -0.80}$	background Admirather than associated OLA
H 15 o	$\frac{2}{a^a}$	9.9 ± 4.0	$0.13^{+0.06}_{-0.05}$	24^{u}	-	<34.85	
S S S S S S S S S S S S S S S S S S S	3	84.2 ± 9.5	1.27 ± 0.14 13 50 ^{+4.88}	22.4 ± 0.01	-	$3.48_{-0.72}$	Both absorbed power-law and APEC are consistent (at 95%
	$\frac{1}{5}b$	33.8 ± 6.8	$0.46^{+0.10}$	- 22 3+0 3	-	-1 30 $+0.80$	
	6	17.2 ± 5.9	$0.40_{-0.09}$ 0.25 ± 0.08	>21.8	_	$0.87^{+54.4}_{-52}$	confidence) with source properties for: 8, 10, 11, 15
	7	$16.2 {\pm} 4.9$	$0.23\substack{+0.07\\-0.06}$	<22.4	-	< 0.55	
	8	30.5 ± 7.8	$0.44{\pm}0.10$	$<\!21.8$	-	$0.35\substack{+0.21 \\ -0.07}$	Only ADEC is consistent with course properties, 12, 12
	9	$90.6{\pm}10.9$	$1.44\substack{+0.18\\-0.17}$	-	-	-	Only APEC is consistent with source properties: 12, 13
	10	9.3 ± 4.5	$0.14^{+0.06}_{-0.05}$	<22	-	<0.22	Located centrally so may represent peak of hot gas
	110	13.6 ± 6.4	$0.21^{+0.08}_{-0.07}$	$<\!21.8$	-	< 0.35	omission in the galaxies
	12 on 52	20.7 ± 7.43	$0.30_{-0.09}^{+0.09}$	-	0.6	$0.40_{-0.24}$	ennission in the galaxies
	13	$76.7{\pm}10.3$	$1.33^{+1.67}$	-	>1.5	$1.00^{+0.26}$	
	14	36.8 ± 7.8	$0.66^{+0.13}_{-0.12}$	<21.8	-	$0.87^{+0.22}_{-0.32}$	
Right ascension	15	$18.0{\pm}6.3$	$0.31\substack{+0.10\\-0.09}$	<21.8	-	$0.35\substack{+0.21\\-0.12}$	
58.0 54.0 11:37:50.0 46.0 42.0	$a_{0.72^{\prime\prime}}$ from	om SSTSL2 J1	13753.73 + 21584	1.1			
Right ascension	$b_{1.32^{\prime\prime}}$ from	m SSTSL2 J11	13754.08 ± 215859	9.1			
Fig. 7: Figs. 5 (right) and 10(left) from O'Sullivan et al. (2024),	$^{c}0.9^{\prime\prime}$ from	n SSTSL2 J113	3755.01 + 215916	.8			
showing locations of X-ray point sources in HCG57. Fig. 10 shows	$d_{\text{The part}}$	ameter is unco	nstrained, so onl	y the value wi	th highes	st probability is sl	nown
their location relative to SDSS <i>q</i> emission. Fig. 5 shows Chandra							
Emission from $HCG57A$ C and D at 0.5.1.1.2 and 2.7 ko// (PCP)							
L_{111}							