Particle acceleration in relativistic magnetized collisionless shocks

Lorenzo Sironi & Anatoly Spitkovsky SNRs and PWNe in the Chandra Era July 9th, 2009

Astrophysical shocks

• In SNRs, GRBs, AGN jets, PWNe: how do collisionless shocks work? How do they produce the observed non-thermal radiation?

- Basic ingredients:
 - 1. Magnetic fields
 - 2. Accelerated particles

How does the efficiency of particle acceleration depend on the magnetic field strength and inclination and the flow composition? Method: Self-consistent first-principle particle-in-cell (PIC) numerical simulations...

Simulation setup

• Injected flow is reflected by a wall; simulation in the wall frame

• Upstream flow is e⁻- e⁺ or e⁻- p⁺ (m_p/m_e =16) cold plasma with bulk Lorentz factor γ_0 =15 and magnetization $\sigma = B_u^2/(4\pi\gamma_0 n_u m_p c^2) = 0.01-0.1$. We vary the wall-frame magnetic obliquity θ .

• 2.5D simulations (100 c/ ω_{pe} X 9000 c/ ω_{pe}) with out-of-plane magnetic field; main results confirmed by 3D simulations

Subluminal vs superluminal shocks

- In superluminal (vs subluminal) shocks, a particle sliding along magnetic field lines CANNOT (vs CAN) return upstream
- For γ₀=15 and σ=0.1, the critical obliquity is θ_{crit}≈34° in the wall frame; in the upstream frame θ'_{crit}≈34°/γ₀
- θ_{crit} weakly depends on both γ_0 (\geq 5) and σ (0.01< σ <0.3)
- We expect particle acceleration to be suppressed in superluminal shocks, unless there is strong magnetic turbulence. But is strong turbulence self-consistently produced by the shock?

θ =15°: a subluminal shock

e⁻-e⁺ shock

$e^{-}p^{+}$ shock ($m_{p}/m_{e}=16$)

Subluminal \rightarrow Returning particles (mostly IONS for e⁻-p⁺ shock)

Returning particles → Upstream waves (oblique vs longitudinal wavevector, linear vs circular polarization)

Superluminal \rightarrow No returning particles \rightarrow No upstream waves

Downstream particle spectra: e⁻-e⁺ shock

- Superluminal shocks DO NOT significantly accelerate, subluminal shocks DO accelerate, the more efficient the closer to θ_{crit}≈34°
- In subluminal shocks, spectra well fitted by 3D low-energy Maxwellian
 + high-energy power-law tail with exponential cutoff

Downstream particle spectra: e⁻-p⁺ shock

lons are accelerated, and their spectra resemble pair spectra in e⁻-e⁺ shocks:
negligible acceleration in superluminal shocks

with increasing θ from 0° to 30°, slope from -3.0 to -2.2, number fraction from 2% to 5%, energy fraction from 10% to 25%

Electron acceleration in e⁻-p⁺ shocks is a factor of 5-10 less efficient than ions

Ion vs electron acceleration (1/2)

 σ =0.1 θ =15° e⁻-p⁺ shock: IONS get accelerated by scattering off the self-generated upstream longitudinal waves

Ion vs electron acceleration (2/2)

 σ =0.1 θ =15° e⁻-p⁺ shock: ELECTRONS are more strongly tied to the magnetic field lines and get quickly advected downstream

Varying σ in e⁻-p⁺ shocks

With increasing σ , electrons are more tied to magnetic field lines \rightarrow Once advected downstream, it is harder for them to come back upstream \rightarrow Lower efficiency of electron acceleration, independent of θ

Summary

- Relativistic magnetized (σ=0.01-0.1) collisionless shocks do exist
- For fixed magnetic field strength, the shock structure and acceleration efficiency critically depend on the magnetic inclination (subluminal vs superluminal shocks):
 - Subluminal pair shocks (θ<θ_{crit}≈34°) are efficient particle accelerators (~1% by number, ~10% by energy), superluminal shocks are not.
 - IONS are efficiently accelerated in subluminal electron-ion shocks, with ~3% of particles and ~20% of energy stored in a suprathermal tail.
 - ELECTRON acceleration in subluminal electron-ion shocks is ~5-10 times less efficient than for ions, especially for high magnetizations (σ~0.1).

Implications

Constraints on the composition and magnetization of pulsar winds:

- If electron-positron plasma, then nearly-parallel shocks (in the upstream fluid frame $\theta'_{crit} \approx 34^{\circ}/\gamma_0$) are required for efficient particle acceleration; or magnetization must be $\sigma \le 10^{-3}$
- If electron-ion plasma, magnetization must be σ≤10⁻² regardless of the magnetic obliquity, since for σ~0.1 shocks, electron acceleration is inefficient even for subluminal configurations.

Caveats:

- Long-term shock evolution? Results from 3D simulations? Realistic mass ratios?
- Different magnetic field geometry in the upstream flow: Magnetic turbulence? Striped wind? → Acceleration via reconnection?
- Different composition of the upstream flow: Ion-doped pair plasma?
 Acceleration via Resonant Cyclotron Absorption (Elena's talk)?