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Astrophysical shocks

* In SNRs, GRBs, AGN jets, PWNe: how do collisionless shocks

work? How do they produce the observed non-thermal radiation?
 Basic ingredients:
1. Magnetic fields

2. Accelerated particles

How does the efficiency of particle acceleration depend on the
magnetic field strength and inclination and the flow composition?

Method: Self-consistent first-principle particle-in-cell (PIC)
numerical simulations...




Simulation setup

reflecting
wall

y
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* Injected flow is reflected by a wall; simulation in the wall frame

* Upstream flow is e-e" or e- p* (m,/m,=16) cold plasma with bulk
Lorentz factor y,=15 and magnetization o = B 4/(41ry,n,mc?) =
0.01-0.1. We vary the wall-frame magnetic obliquity 6.

* 2.5D simulations (100 c/w,, X 9000 c/w,) with out-of-plane
magnetic field; main results confirmed by 3D simulations




Subluminal vs superluminal shocks

In the upstream frame

= arccos(/3,)

In superluminal (vs subluminal) shocks, a particle sliding along
magnetic field lines CANNOT (vs CAN) return upstream

For v,=15 and 0=0.1, the critical obliquity is 6_,;~34° in the wall
frame; in the upstream frame 6’ ,=34°/y,

0. weakly depends on both vy, (25) and o (0.01<0<0.3)

We expect particle acceleration to be suppressed in superluminal
shocks, unless there is strong magnetic turbulence. But is strong
turbulence self-consistently produced by the shock?
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0=15°: a subluminal shock
e-p* shock (m,/m,=16)

e-e* shock
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Subluminal = Returning particles (mostly IONS for e-p* shock)




0=15°: a subluminal shock
e-e* shock e-p* shock (m,/m,=16)
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Returning particles = Upstream waves (oblique vs longitudinal
wavevector, linear vs circular polarization)




0=45°: a superluminal shock
e-e* shock e-p* shock (m,/m,=16)
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Superluminal = No returning particles =» No upstream waves




Downstream particle spectra: e-e* shock

« Superluminal shocks DO NOT significantly accelerate, subluminal
shocks DO accelerate, the more efficient the closer to 6,,~34°

In subluminal shocks, spectra well fitted by 3D low-energy Maxwellian
+ high-energy power-law tail with exponential cutoff

w,t=9000

e-e* shock

As O increases
from 0° to 30°;

ydAN(y)/dy

* Power-law slope
from -2.8 to -2.3

 Number fraction
from 1% to 2%

« Energy fraction A ETIT] IR T
o o 1000
from 5% to 13% Sironi & Spitkovsky 2009




Downstream particle spectra: e-p* shock

©,t=9000
T L |

lons are accelerated, and their spectra
resemble pair spectra in e-e* shocks:

* negligible acceleration in superluminal
shocks

« with increasing 6 from 0° to 30°, slope
from -3.0 to -2.2, number fraction from

2% to 5%, energy fraction from 10% to
25%

YAN(y)/dy

Electron acceleration in e-p* shocks is
a factor of 5-10 less efficient than ions

wpt=l45I00'= .io.r.‘s.. - w,t=4500: electrons
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lon vs electron acceleration (1/2)

0=0.1 0=15° e~-p* shock: IONS get accelerated by scattering
off the self-generated upstream longitudinal waves
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lon vs electron acceleration (2/2)

0=0.1 8=15° e-p* shock: ELECTRONS are more
strongly tied to the magnetic field lines and get quickly
advected downstream
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YAN(y)/dy

yAN(y)/dy

Varying o in e-p* shocks

Electrons

With increasing g, electrons
are more tied to magnetic
field lines

=» Once advected
downstream, it is harder for
them to come back upstream

=>» Lower efficiency of

electron acceleration,
independent of 6




Summary

Relativistic magnetized (0=0.01-0.1) collisionless shocks do
exist

For fixed magnetic field strength, the shock structure and
acceleration efficiency critically depend on the magnetic
inclination (subluminal vs superluminal shocks):

*  Subluminal pair shocks (8<6_,,~=34°) are efficient particle
accelerators (~1% by number, ~10% by energy), superluminal
shocks are not.

IONS are efficiently accelerated in subluminal electron-ion
shocks, with ~3% of particles and ~20% of energy stored in a
suprathermal tail.

ELECTRON acceleration in subluminal electron-ion shocks is
~5-10 times less efficient than for ions, especially for high

magnetizations (0~0.1).




Implications

Constraints on the composition and magnetization of pulsar winds:

If electron-positron plasma, then nearly-parallel shocks (in the
upstream fluid frame 8’ _,=34°/y,) are required for efficient particle
acceleration; or magnetization must be 0<10-3

If electron-ion plasma, magnetization must be 0<10-? regardless of
the magnetic obliquity, since for ~0.1 shocks, electron
acceleration is inefficient even for subluminal configurations.

Caveats:

Long-term shock evolution? Results from 3D simulations? Realistic
mass ratios?

Different magnetic field geometry in the upstream flow: Magnetic
turbulence? Striped wind? =» Acceleration via reconnection?

Different composition of the upstream flow: lon-doped pair plasma?
=» Acceleration via Resonant Cyclotron Absorption (Elena’s talk)?




