X-ray Line Morphologies (Might) Trace the Nature of the Progenitor!

Laura A. Lopez
University of California, Santa Cruz

Collaborators: Enrico Ramirez-Ruiz (UCSC), Daniela Huppenkothen (Amsterdam), Carles Badenes (Princeton), Tesla Jeltema (UCO/Lick), David Pooley (Wisconsin)
Motivation

Credit: Chandra Catalog of Galactic Supernova Remnants
Motivation

➡ Need *systematic, quantitative* way to compare sources

Credit: Chandra Catalog of Galactic Supernova Remnants
Quantitative Measures of X-ray Morphology

Quantitative Measures of X-ray Morphology

- Multipole Expansion to measure symmetry/ellipticity

Quantitative Measures of X-ray Morphology

- Multipole Expansion to measure symmetry/ellipticity
- Wavelet-Transform Analysis to measure substructure scale & location

Quantitative Measures of X-ray Morphology

→ Multipole Expansion to measure symmetry/ellipticity

→ Wavelet-Transform Analysis to measure substructure scale & location
 ∗ define heating, cooling, and explosion properties

Quantitative Measures of X-ray Morphology

➡ Multipole Expansion to measure symmetry/ellipticity

➡ Wavelet-Transform Analysis to measure substructure scale & location
 ★ define heating, cooling, and explosion properties
 ★ probe particle acceleration sites

Quantitative Measures of X-ray Morphology

- Multipole Expansion to measure symmetry/ellipticity
- Wavelet-Transform Analysis to measure substructure scale & location
 - define heating, cooling, and explosion properties
 - probe particle acceleration sites

Quantitative Measures of X-ray Morphology

- Multipole Expansion to measure symmetry/ellipticity
- Wavelet-Transform Analysis to measure substructure scale & location
 - define heating, cooling, and explosion properties
 - probe particle acceleration sites
- Two-Point Correlation to compare spatial distributions

Quantitative Measures of X-ray Morphology

- Multipole Expansion to measure symmetry/ellipticity
- Wavelet-Transform Analysis to measure substructure scale & location
 - define heating, cooling, and explosion properties
 - probe particle acceleration sites
- Two-Point Correlation to compare spatial distributions
 - quantify chemical mixing and segregation

Quantitative Measures of X-ray Morphology

- Multipole Expansion to measure symmetry/ellipticity
- Wavelet-Transform Analysis to measure substructure scale & location
 - define heating, cooling, and explosion properties
 - probe particle acceleration sites
- Two-Point Correlation to compare spatial distributions
 - quantify chemical mixing and segregation
 - disentangle line from non-thermal emission

Fe XXI
Ar XVII
S XV
Si XIII
Mg XI
Ca XIX
Fe XXV
Continuum
Si XIII

Energy (keV)

normalized counts s⁻¹ keV⁻¹
Measuring Power at Many Scales
Measuring Power at Many Scales

Wavelet Transform Analysis: Characterize sub-structure scale and location by measuring/filtering power.
Measuring Power at Many Scales

Wavelet Transform Analysis: Characterize sub-structure scale and location by measuring/filtering power
Average Power vs. Scale

Kepler

- Fe XXI
- Mg XI
- Si XIII
- S XV
- Ar XVII
- Ca XIX
- Fe XXV

Power vs. Scale (arcsec)
Average Power vs. Scale

Cas A

- O VIII
- Mg XI
- Si XIII
- S XV
- Fe XXV

\[
\frac{\langle w \rangle}{a}
\]

\[a \text{ (arcsec)}\]

\[a \text{ (pc)}\]
Average Power vs. Scale

W49B

L. A. Lopez -- DARK

X-ray; 1.64 μm [Fe II]; 2.12 μm [HI]

Average Power vs. Scale

W49B

Power vs. Scale

Fe XXV
Si XIII
S XV
Ar XVII
Ca XIX

Iron
Sulfur
Silicon

W49B
L. A. Lopez -- DARK
X-ray; 1.64 μm [Fe II]; 2.12 μm [HI]

Spherical models from Nomoto et al. 2006; Aspherical models from Maeda & Nomoto 2003

![Graph showing the distribution of elements Si, S, Ar, Ca, Fe with their respective X/Fe ratios and Iron regions.](image)

Consistent with models of bipolar explosions

Spherical models from Nomoto et al. 2006; Aspherical models from Maeda & Nomoto 2003
Scale vs. Age

Power vs. Scale / R

- Cas A
- Tycho
- Kepler
- W49B
- SN 1006
- Kes 73
- RCW 103
- G292.0+1.8
Scale vs. Age

Age

Power

Scale / R

Cas A
Tycho
Kepler
W49B
SN 1006
Kes 73
RCW 103
G292.0+1.8
Small-Scale Asymmetries

O VIII : Fe XXV

Fe XXI : Ca XIX
Small-Scale Asymmetries

O VIII : Fe XXV

Fe XXI : Ca XIX
Small-Scale Asymmetries

Percentage of Maximum Flux vs. Fractional Radius for Tycho: Fe XXI : Ca XIX and Cas A: O VIII : Fe XXV.

Inset images show ionized regions: O VIII : Fe XXV and Fe XXI : Ca XIX.
Multipole Expansion
Power-Ratio Method: Calculate multipole moments of the X-ray surface brightness
Multipole Expansion

Power-Ratio Method: Calculate multipole moments of the X-ray surface brightness

e.g. Buote & Tsai 1995, 1996; Jeltema et al. 2005
Multipole Expansion

Power-Ratio Method: Calculate multipole moments of the X-ray surface brightness

e.g. Buote & Tsai 1995, 1996; Jeltema et al. 2005

→ P_2: measure of ellipticity / elongation
Multipole Expansion

Power-Ratio Method: Calculate multipole moments of the X-ray surface brightness
e.g. Buote & Tsai 1995, 1996; Jeltema et al. 2005

- P_2: measure of ellipticity / elongation
- P_3: measure of mirror asymmetry
Power-Ratio Method: Calculate multipole moments of the X-ray surface brightness

- P_2: measure of ellipticity / elongation
- P_3: measure of mirror asymmetry
Power-Ratio Method: Calculate multipole moments of the X-ray surface brightness

e.g. Buote & Tsai 1995, 1996; Jeltema et al. 2005

- P_2: measure of ellipticity / elongation
- P_3: measure of mirror asymmetry
Power-Ratio Method: Calculate multipole moments of the X-ray surface brightness

e.g. Buote & Tsai 1995, 1996; Jeltema et al. 2005

- P_2: measure of ellipticity / elongation
- P_3: measure of mirror asymmetry
Power-Ratio Method: Calculate multipole moments of the X-ray surface brightness
e.g. Buote & Tsai 1995, 1996; Jeltema et al. 2005

\[P_2: \text{measure of ellipticity / elongation} \]

\[P_3: \text{measure of mirror asymmetry} \]
Multipole Expansion of Line Images
Multipole Expansion of Line Images

Core-Collapse

Type Ia

Mirror Symmetry

Ellipticity/Elongation

RCW 103
GI 2.0.2
Cas A

Tycho
Kepler
Dem L71

W49B
Kes 73
G292.0+1.8
X-ray Line Diagnostics
Type Ia and CC have similar emitting regions for all measurable emission lines
X-ray Line Diagnostics

- Type Ia and CC have similar emitting regions for all measurable emission lines.
- The relative sizes are a function of age with smaller sizes corresponding to older remnants.
X-ray Line Diagnostics

- Type Ia and CC have similar emitting regions for all measurable emission lines.
- The relative sizes are a function of age with smaller sizes corresponding to older remnants.
- Large scale asymmetries in the brightness profiles seem to be a good discriminant of progenitor type.
Type Ia and CC have similar emitting regions for all measurable emission lines.

The relative sizes are a function of age with smaller sizes corresponding to older remnants.

Large scale asymmetries in the brightness profiles seem to be a good discriminant of progenitor type.

Small-scale asymmetries may be a useful discriminant as well (with caveat).
Thank you!
\[T_e \sim 2-4 \times 10^7 \text{ K} \]

$T_e \sim 2-4 \times 10^7$ K

$T_e \sim 2-4 \times 10^7$ K

\(T_e \sim 2-4 \times 10^7 \text{ K} \)

Iron must have been anisotropically ejected

Average Power vs. Scale

Tycho

- Red: Si XIII
- Blue: Fe XXI
- Green: S XV

Power vs. Scale a (arcsec)
Average Power vs. Scale

SN 1006

Power

Scale (arcsec)

O VIII
Mg XI

Inset image of SN 1006
Average Power vs. Scale

![Graph showing average power versus scale for Mg XI, Si XIII, and S XV. The graph includes a scale from 2 to 25 arcsec and power values from 0.1 to 1.0. The inset image depicts the distribution of power across different scales.]
Average Power vs. Scale

G292.0+1.8

Scale (arcsec)

Ne IX
Mg XI
Si XIII

Power

Scale (arcsec)
Average Power vs. Scale

RCW 103

Power

Scale (arcsec)

Ne IX
Mg XI
Si XIII
Lx vs. Clump Size

\[L_x = 1.96x + 35.3 \]
\[\text{Kepler: } y = 2.93x + 34.9 \]
\[\text{Tycho: } y = 2.01x + 34.5 \]
\[\text{W49B: } y = 2.52x + 33.1 \]
\[\text{Kes 73: } y = 2.07x + 33.5 \]
\[\text{RCW 103: } y = 2.09x + 33.4 \]
\[\text{3C391: } y = 2.05x + 32.8 \]
Lx vs. Clump Size

Cas A: $y = 1.96x + 35.3$
Kepler: $y = 2.93x + 34.9$
Tycho: $y = 2.01x + 34.5$
W49B: $y = 2.52x + 33.1$
Kes 73: $y = 2.07x + 33.5$
RCW 103: $y = 2.09x + 33.4$
3C391: $y = 2.05x + 32.8$
Slope of Lx vs size

Cas A: 1.96+/−0.22
Kepler: 2.93+/−0.20
Tycho: 2.01+/−0.17
W49B: 2.52+/−0.25
Kes73: 2.07+/−0.15
RCW103: 2.09+/−0.16
3C391: 2.05+/−0.19