INTRODUCTION

The Large Magellanic Cloud (LMC) is an ideal site to study a large sample of supernova remnants (SNRs) in detail. We have identified new LMC SNRs in multi-wavelength data. These SNRs are generally fainter than the known sample.

Our analysis of these remnants is based on:

- XMM-Newton observations
- Optical emission line and echelle data from CTIO
- Plasma hydrodynamic simulations

A Multi-wavelength Study of

Matthew D. Klimek, Sean D. Points, R. Chris Smith (CTIO)

Newly-Discovered Faint SNRs

in the Large Magellanic Cloud

Robin Shelton (Georgia), Rosa Williams (Columbus State)

BACKGROUND MODELING

Instrumental Effects

Fluorescent Lines

Gaussian fits to lines at 1.5 keV (Al K α) and 1.75 keV (Si $K\alpha$)

Residual Proton Contamination

Extragalactic Background **Thermal** Modeled as APEC thermal plasma. Average value *kT* ~ 0.22 keV

Local Hot Bubble Modeled as APEC thermal plasma. Average value *kT* ~ 0.10 keV

Non-thermal

Modeled as a power law with photon index fixed at 1.46.

Figure 1: Background spectrum overlaid with individual model

components

1.315

Source Compor	nent
 APEC thermal plasma added to background model Source component fitted with background parameters fixed. Abundances fixed at the standard LMC 	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

SOURCE MODEL & SIMULATION

Physical	Properties	\mathbf{OF}	SNRs

LHB

	SNR0449–6921	SNR0506-6541	SNR0537-6628
R (pc)	19×11	60×40	23
$SB(10^{-15})$	0.9	0.5	0.4
$v_{\rm exp}$ (km s ⁻¹)	70	90	55
$n_{\rm e,shell} \ ({\rm cm}^{-3})$	5.5	3.0	3.2
$V_{\rm shell} \ ({\rm cm}^3)$	1.4×10^{59}	$1.7 imes 10^{60}$	$4.3 imes 10^{59}$
$M_{\rm shell}$ (M_{\odot})	820	5.6×10^{3}	1.4×10^{3}
K (erg)	$4.2 imes 10^{49}$	$4.5 imes 10^{50}$	4.4×10^{49}
$P_{\rm shell}$ (dyne cm ⁻²)	$1.5 imes 10^{-11}$	$8.2 imes 10^{-12}$	$8.8 imes 10^{-12}$
$kT \; (keV)$		0.17(1)	0.22(5)
Normalization $(10^{-14} \text{ cm}^{-5})$		0.004(2)	0.0009(9)
$V (\mathrm{cm}^3)$		$1.3 imes 10^{61}$	$1.5 imes 10^{60}$
$n_{\rm e,hot}$ (cm ⁻³)		0.11(7)	0.1(1)
$M_{\rm hot}$ (M_{\odot})		$1.3(9) \times 10^{3}$	200(200)
$E_{\rm th} \ ({\rm erg})$		$1.07(4) \times 10^{51}$	$2.0(8) \times 10^{50}$
$P_{\rm hot}$ (dyne cm ⁻²)		$5.5(2) \times 10^{-11}$	$9(3) \times 10^{-11}$

Left: Table of SNR properties as calculated from H alpha, echelle and X-ray spectral observations.

Below: H alpha images of individual objects overlaid with X-ray contours. Images are 10 arcseconds square.

1-D Simulations

- Simulations are based on properties calculated from the observations.
- The simulations output temperature, density and ionization level as a function of radius and age.
- These are converted to spectra.
- We replace the fitted source component as described at left by the simulated spectrum, and step through the various epochs of the simulation to find the best fit.

SNR0506-6541

- Shell structure in optical data though not a clean sphere as in SNR0449-6921.
- Second-largest known SNR shell in the LMC. Good agreement between properties derived from expansion and spectral data. Implied age

$P_{\rm hot} \ ({\rm dyne} \ {\rm cm}^{-2})$ $5.5(2) \times 10^{-11}$ $n_{\rm ISM}~({\rm cm}^{-3})$ > 4.00.5

SNR0449-6921

>Lies on the edge of a large H II region. >Well-defined shell structure visible in optical data. >Optical shell contains smooth distribution of soft Xray emission. >Too few X-ray counts to constrain model fit.

SNR0537-6628

- >Lies on the edge of a large H II region. >Optical filaments visible but in a nested shell-like pattern.
- The two shells have distinct echelle expansion patterns.
- >X-ray emission confined to the area enclosed by the outer half shell. Possible bilobed structure?

Evidence for freshly shocked gas behind the

shell implies higher expansion velocity and

younger age ~95 kyr.

Simulations favor an age of 100 kyr.

ACKNOWLEDGEMENTS:

This project was supported by NASA grant #NNG06EQ011.

Disagreement between properties derived from

expansion data and spectral data when assuming

spherical symmetry.

>Agreement achieved for a bilobed structure with a

viewing angle of 55 degrees, which gives an age of

>1-D simulations support and age >80 kyr.