

X-ray Observations of Supernova Remnants

Anne Decourchelle

Service d'Astrophysique IRFU, CEA Saclay

High energy emission of young supernova remnants

Irfu

Kirshner et al. 87, Albinson et al. 86, De Vaucouleurs 85)

Why are X-rays crucial to investigate particle acceleration ?

- Physics of the synchrotron emission of the electrons accelerated at the highest energy
- Physics of the thermal gas
 - Global parameters of the remnant : => downstream density => ambient density
 - Back-reaction of accelerated ions (protons)

• Capability of performing spatially-resolved spectroscopy at small scale (< 10 arcsec)

lrfu

Saclay

How large is the magnetic field ? Is it very turbulent ? Is it amplified ?

The magnetic field is a crucial parameter :

- for understanding particle acceleration
- for deriving the maximum energy of accelerated particles
- for interpreting the origin of TeV $\gamma\text{-rays}$: leptonic versus hadronic

Morphology and variability of the synchrotron emission

 Sharp filaments observed at the forward shock : width determined by synchrotron losses of ultrarelativistic electrons

(Park et al. 09, Parizot et al. 06, Bamba 05, 04, 03, Vink & Laming 03,...)

- Fast variability of the brightness of these filaments (Patnaude et al. 09, Uchiyama et al. 08, 07)
- Broad band modeling of the nonthermal emission (Berezhko et al. 09,Voelk et al. 08,...)

=> high value of B_{downstream}(~ 50-500 μG) which implies large magnetic field amplification

X-ray image (green) Radio image (red) expanded by 16%.

Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era, Boston, July 2009

(e)

Saclay

What fraction of the shock energy can be tapped by the cosmic rays ? Evidence for ion acceleration in SNRs ?

NL diffusive shock acceleration

- Curvature of the particle spectra (Berezhko & Ellison 99, Ellison & Reynolds 91,...)
- Lower post-shock temperature (Ellison et al. 00, Decourchelle et al. 00)
- Shrinking of the post-shock region (Decourchelle et al. 00)

Post-shock conditions

broad line and shock velocity from X-ray proper motion (Helder et al. 09)

No back-reaction in the older SNR

• **Cygnus Loop** : post-shock electron temperature from X-rays and shock velocity from optical proper motion (Salvesen et al. 09)

50 % post-shock pressure in relativistic particles Helder et al. 09

Shrinking of the shocked region

Indication of strong back reaction in young SNRs

- Cas A: X-ray proper motion and morphology (Patnaude et al. 09)
- SN 1006: morphology (Miceli et al. 09, Cassam-Chenaï et al. 08)
- Tycho: morphology (Warren et al. 05, Decourchelle et al. 04)

Irfu

Miceli et al. 09 Cf Miceli's talk

Heating of the ambient medium by the foward shock

Heating of the ejecta by the reverse shock

Irfu	Thermal emission from the shocked ambient medium	
	Access to the global properties of the remnant	
	 ambient medium: density, composition 	
Saclay	 supernova: shock velocity and radius => age, SN energy and ejected mass 	
	•shock physics: particle acceleration (Spitkovski), collision-less e- and ion heating (Laming)	
Shock physics		
 High post-shock oxygen temperature in SN 1006 (XMM-Newton/RGS, Vink et al. 03) 		
$kT_{O} \sim 528 \pm 150$ keV and $kT_{e} \sim 1.5$ keV => small degree (5%) of e ⁻ /ion equilibration at the shock		
 Low density ambient medium for the SN Ia remnants: 		
 ✓ G33 ✓ SNF ✓ Tych ✓ SN 2 	0.2+1.0: $n_0 \sim 0.1 \text{ cm}^{-3}$, Park et al. 09 0.0509-67.5 $n_0 < 0.6 \text{ cm}^{-3}$, Kosenko et al. 08 no: $n_0 < 0.6 \text{ cm}^{-3}$, Cassam-Chenaï et al. 07 1006: $n_0 < 0.05 \text{ cm}^{-3}$, Acero et al. 07	
 the core collapse remnant RXJ1713.7-3946: n₀ < 0.02 cm⁻³, Cassam-Chenaï et al. 04b 		
=> in	pact the level of pion decay emission in the TeV range due to proton-proton collisions	
 Stellar wind environment for the core collapse SNR Cas A: proper motion and morphology, Patnaude et al. 09 		
Sub-solar abundances in the Magellanic clouds (Borkowski et al. 06, 07,)		

Borkowski et al. 06

Reynolds et al. 07

Supernova Remnants and Pulsar Wind Nebulae in the Chandra Era, Boston, July 2009

What is the kinematics of the ejecta?

Saclay

Bulk motion of the ejecta through Doppler shift measurements

=> deep insight in the expansion of the ejecta and explosion mechanism through asymmetries and inversion of the nucleosynthesis product layers.

86 ks XMM-Newton observation of Cas A

- **Tycho**: 2800-3250 km/s for the shell of iron-emitting ejecta (Suzaku, Furuzawa et al. 09)
- **Puppis A :** fast-moving oxygen knots at -3400 and -1700 km/s (Katsuda et al. 08)
- **Cas A** : from -2500 to + 4000 km/s (Chandra/HETG, Lazendic et al. 06, XMM -Newton, Willingale et al. 01; Chandra, Hwang et al. 01)

Si-K, S-K and Fe-K Doppler maps 20" x 20 " images, Willingale et al. 02

Saclay

Access to the total mass of ⁴⁴Ti synthesized by the supernovae

=> keys to the very depths of SNe and to the physical conditions of the explosion

Decay-chain by electronic capture :

⁴⁴Ti (85 yr)→ ⁴⁴Sc (5.6 h) → ⁴⁴Ca

=> 3 γ-ray lines (detected in Cas A)

• 67.9 and 78.4 keV (BeppoSAX, Vink et al. 01, INTEGRAL, Renaud et al. 06)

=> $M(^{44}Ti)$ = 1.6 10⁻⁴ M_{sun} in Cas A

• 1157 keV (Comptel, Iyudin et al. 94) + search with INTEGRAL/SPI (Martin et al. 09)

=> X-ray Kα **lines of ⁴⁴Sc** at 4.1 keV due to K-shell vacancies (Leising et al. 01)

• Claim of a possible detection in RX J0852.0-4622 (ASCA, XMM-Newton, Chandra) but infirmed by Suzaku (Hiraga et al. 09)

Difficult task with current hard X-ray instruments => NuSTAR (Simbol-X currently cancelled)

Irfu	Summary
CCC Saclay	 X-rays are providing a wealth of in-depth results on supernova remnants which are providing relevant answers to prime astrophysical issues: Particles acceleration, magnetic field and the origin of Galactic cosmic rays Heating and chemical enrichment of galaxies Supernova explosion physics and standard candles for cosmology

Strength of current X-ray observatories :

- Spatially resolved spectroscopy at small spatial scale
- High resolution spectroscopy

⇒ Needs for large programs to get sufficient statistics at the spatial, spectral and temporal scales relevant to the processes at work in SNRs.

⇒ Needs for mission extension of the current X-ray observatories as long as they give satisfaction, pending and preparing the future international X-ray observatory IXO.